
Preface (to the
instructor)

This text’s approach

This text provides a distinct way of teaching discrete mathematics. Since dis-
crete mathematics is crucial for rigorous study in computer science, many texts
include applications of mathematical topics to computer science or have se-
lected topics of particular interest to computer science. This text fully inte-
grates discrete mathematics with programming and other foundational ideas in
computer science.

In fact, this text serves not only the purpose of teaching discrete math. It
is also an introduction to programming, although a non-traditional one. Func-
tional programming is a paradigm in which the primary language construct is
the function—and function here is essentially the same as what it is in mathe-
matics. In the functional paradigm we conceive the program as a collection of
composed functions, as opposed to a sequence of instructions (in the impera-
tive paradigm) or a set of interacting objects (in the object-oriented paradigm).
Dominant computer science curricula emphasize object-oriented and impera-
tive programming, but competence in all paradigms is important for serious
programmers—and functional programming in particular may be appropriate
for many casual programmers, too. For our purposes, the concepts underlying
functional programming are especially grounded in those of discrete mathe-
matics.

Discrete mathematics and functional programming are equal partners in this
endeavor, with the programming topics giving concrete applications and illus-
trations of the mathematical topics, and the mathematics providing the scaf-
folding for explaining the programming concepts. The two work together in
mutual illumination. (The time spent on the math and programming content
streams, however, is closer to a 60-40 split.)

Discrete math courses and texts come in many flavors. This one emphasizes
sets, using the set concept as the building block for discussions on proposi-
tional logic, relations, recursion, functions, graphs, complexity classes, lattices,
groups, and automata. Of course the specific topics themselves are subservient
to our real object: teaching how to write proofs.

xi



The presentation of functional programming is based on the classic ap-
proach embodied in Abelson and Sussman’s Structure and Interpretation of Com-
puter Programs (SICP) [1]. In short, it is SICP-light, modernized and adapted to
the discrete math context, and translated into the ML programming language.

Rationale

Why teach discrete mathematics—or functional programming—this way? This
approach is proposed as a solution to a variety of curricular problems.

Serving the constituencies. As a rookie professor, the author taught a dis-
crete math course designed for math majors but filled with math-averse com-
puter science majors fulfilling their math requirement and, in the same semester,
an introductory programming course designed for computer science majors but
filled with math majors fulfilling their computing requirement. Needless to say,
much effort went into convincing each population that the course was relevant
to them.

If the supporting courses really are so important, than why do these need
to be separate tasks? Why not offer a single course intertwining programming
and proof-based discrete mathematics, making their mutual relevancy explicit?
The math content will motivate the math majors and make the programming
more familiar and palatable. The programming content will sweeten the math
pill for the computer science majors.

Moreover, bringing the two populations together will allow them to learn
from and help each other. This text’s premise is

Math majors should learn to write programs
and

computer science majors should learn to write proofs
together.

Further still, this text is appropriate for non-majors who are interested in
a compact experience in both fields. Accordingly, liberal arts colleges will find
this approach particularly useful for interdisciplinary cross-pollination.

Theory vs practice. Where do the foundations of computing belong in under-
graduate curriculum? Some departments have faced battles between, on one
hand, those wanting to use the foundations and theory of computer science as
a gateway for incoming majors and, on the other, those who want to ensure
students develop programming skills immediately.

With this text, you do not have to choose. While this is not explicitly a
course on the theory of computation or other foundations of computer science,
discrete mathematics provides the right context for previewing and introducing
these ideas. Moreover, the programming content keeps the theory grounded in
practice.

xii



Coverage of functional programming. Despite the paradigm’s importance,
finding the right place for functional programming in an undergraduate cur-
riculum has been tricky. From the 80’s through the early 2000’s, several good
texts were produced for a functional-first approach to teaching programming,
but the approach never became dominant. Most students receive a brief expo-
sure to functional programming in a sophomore-level programming languages
course, if at all. As the undergraduate curriculum becomes crowded with new
topics vying for attention and old, elective topic being pushed earlier (mobile
computing and concurrency, for two examples), the programming languages
course absorbs much of the pressure. The temptation to jettison functional
programming altogether is strong.

This would be a great mistake. Many design patterns in object-oriented
programming are imports of ideas from functional programming. Features from
functional languages are appearing in languages not traditionally thought of as
functional (Python, C#, and Java 8). And functional programming is a handy
way to reason about questions in the foundations of computer science.

The solution proposed here is to put functional programming in the discrete
math course. This way functional programming is seen early (ideally freshman
or sophomore year) and, for computer science majors, is taught in parallel with
a traditional introduction to programming, such as would teach imperative,
object-oriented, and concurrent programming.

Why ML? The ML programming language—to be specific, Standard ML or
SML—is chosen as the language for this book, but the approach is not inher-
ently tied to ML. In choosing a language, our first goal should be to do no
harm—the language, especially its syntax, should not get in the way. ML was
chosen for its simplicity, particularly its similarity to mathematical notation.
Students used to mathematics should find the syntax natural. For students with
prior programming experience, it is not much of a transition syntactically from,
say, Java, either.

With a little effort, this text could be used with programming examples and
exercises in F#, OCaml, or Haskell. With a little more effort, a Lisp dialect or
even Python could be used.

Themes

A diverse set of topics fall under the discrete mathematics umbrella, but certain
themes come up throughout the book.

Proof and program. This text strives to make skill in proof-writing and pro-
gramming transferable from one to the other. The interplay between the two
content streams shows how the same thinking patterns for writing a rigorous
proof should be employed to write a correct and useful program.

xiii



Thinking recursively. Many students have found recursion to be one of the
most mind-boggling parts of learning programming. The functional paradigm
and the discrete math context make recursion much more natural. Recursive
thinking in both algorithms and data structures is a stepping stone to proofs
using structural induction and mathematical induction.

Formal definitions. Precision in proofs hangs on precision in the definitions
of things the proof is about. Informal definitions are useful for building intu-
ition, but this text also calls students’ attention to the careful definitions of the
terms.

Analysis and synthesis. Analysis is taking something apart. Synthesis is put-
ting things together. Whether we are proving a proposition or writing a pro-
gram, thinking through the problem often comes into two phases: breaking it
down into its components and assembling them into a result. In a proof this
manifests itself in a first section of the proof where the given information is
dissected using formal definitions and a second section where the known in-
formation is assembled into the proposition being proven, again using formal
definitions. (We call that the analytical and synthetic use of the definitions.)
A similar pattern is seen in operations on lists—analytical operations that take
lists apart and synthetic operations that construct them.

How to use this text

Audience. Ideally this text can be used by first-year undergraduates who are
well-prepared mathematically—that is, able to reason abstractly and willing
to think in new ways. Weaker students mathematically may be better served
by taking such a course in their sophomore or junior years. The only hard
prerequisites are high school algebra and pre-calculus. Occasionally the text
uses examples from differential or integral calculus, but these can be skipped
without harming the general flow the material.

The structure of each chapter. The names of the chapters are singular nouns:
Set, Proof, Function, Graph, etc. This is to draw attention to each chapter’s pri-
mary object of study. The opening sections of a chapter provide foundational
definitions and examples, followed by the most important properties, proposi-
tions (and proofs) about the object of study, and finally applications of them,
especially computational applications.

All sections except special topics or those providing a very general introduc-
tion end with a selection of exercises. Almost all chapters end with an extended
programming example (including a project) and a special topic that condenses
an advanced mathematical or computational idea to an accessible level based
on the contents of the chapter.

xiv



The structure of the book. The chapters are collected into three parts. Set,
List, Proposition, and Proof constitute the Foundations—ideas and skills for a
student to master before seeing the other material which is built on them. The
Core part of the text is the chapters on Relation, Self Reference, and Function.
The Foundations and Core chapters build on each other in sequence.

The Elective chapters—Graph, Complexity Class, Lattice, Group, and Autom-
aton—represent more advanced topics, building on both the foundations and
the core. These chapters are almost completely independent of each other. The
instructor may pick and choose from these and even reorder them with very
little difficulty. A new recurring theme emerges in Graph, Lattice, and Group,
that of isomorphism, structural equivalence between mathematical objects.

Pacing and planning. There is a wide range of difficulty in this material,
and accordingly it can be adapted to courses at several levels. The Electives
part naturally contains more advanced material, but particularly challenging
sections pop up at various points in the book. These include Sections 4.9, 5.9,
6.7–6.10, 7.9, and 10.4. These (and any of the extended examples or special
topics) can be omitted without harming the flow of the text.

For average to strong students in their freshman or sophomore year, most of
Chapters 1–7 can be covered in one semester—the instructor is encouraged to
choose some of the challenging or extended example sections to cover, but not
all. The chapters in the Elective part can be used in a second semester. There
may be time at the end of the semester to cover select topics from the Elective
part. The author has used this material for six years in such a course with
this approximate outline (mapping class days to sections, assuming a four-hour
course meeting three days a week):

Day 1 1.1–1.3 Day 15 4.1–4.2 Day 27 6.1–6.2
Day 2 1.4–1.6 Day 16 4.3–4.4 Day 28 6.4
Day 3 1.7–1.9 Day 17 4.5–4.8 Day 29 6.5–6.6
Day 4 1.10–1.13 Day 18 4.9 Day 30 6.9–6.10
Day 5 2.1–2.2 Day 19 4.10–4.11 Day 31 6.10–6.11
Day 6 2.3–2.4 Day 20 5.1–5.3 Day 32 6.12
Day 7 2.5–2.6 Day 21 5.4 Day 33 7.1–7.3
Day 8 3.1–3.4 Day 22 5.5 Day 34 7.4–7.5
Day 9 3.5–3.7 Day 23 5.6–5.7 Day 35 7.6–7.8
Day 10 3.8–3.9 Day 24 5.8–5.9 Day 36 7.9
Day 11 3.10–3.13 Day 25 Review; 4.12 Day 37 Review; 7.15
Day 12 3.14 Day 26 Test Day 38 Test
Day 13 Review
Day 14 Test

This schedule leaves about two weeks at the end of the semester for topics
chosen from later chapters.

xv



For a class of students who are less mathematically prepared, this text can
be used in a more slowly paced course that covers Chapters 1–3 and roughly
the first half of each of Chapters 4–7.

For a class of very experienced students, this text can be adapted to an
advanced course where Chapters 1–4 are treated very quickly, leaving time for
significant coverage of material from Chapters 8–12.

Supplemental materials and other related resources can be found at
http://cs.wheaton.edu/~tvandrun/dmfp.

xvi


