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6.12. EXTENDED EXAMPLE: HUFFMAN ENCODING

6.12 Extended example: Huffman encoding

The information we store and use with computers each day—whether text,
images, audio, or numerical data—must be decomposed into a form suitable for
electronic media. It must be digitized. It is no surprise, then, that much research
has gone into efficient binary encoding of different kinds of information. If we
can store information with as few bits as possible, that same information will
require less storage space and, probably more importantly, can be transmitted
faster and with less bandwidth.

Text is a simple example. We represent text digitally by representing each
letter, number, and punctuation symbol with a binary code. By code here we
really mean encoding scheme, that is, an association between characters and
bit sequences. Standard encoding schemes for text are ASCII, which uses 7-bit
sequences for Latin characters, and Unicode, which uses 16-bit sequences and
includes alphabets from around the world.

We will simplify things a bit. Suppose we wanted to transmit the string
RIFFRAFF. Since this involves only four distinct characters—A, F, I, and R—we
can make our own just-for-this-purpose encoding scheme that uses only two
bits per character:

A 00
F 01
I 10
R 11

11 10 01 01 11 00 01 01
R I F F R A F F

The entire string requires sixteen bits, which is how much we would need
for a single character if we were using Unicode. We would like to find an
encoding scheme for a given message that will encode that message with as
few bits as possible.

Make sure you notice the difference between a message and an encoding
scheme. We are working on optimizing the encoding scheme, measured by
how small it makes the encoding of the message. To be useful, we presumably
would need to transmit a representation of the encoding scheme itself, but we
will ignore that for now. Also, by encoding we do not mean encryption. Our goal
here is efficiency, not secrecy.

Our little encoding scheme is similar to ASCII and Unicode in that all as-
sume that each character has the same number of bits. Let us now jettison that
assumption; why not give characters that occur more frequently codes with
fewer bits than rarer characters? Since F occurs four times and R twice, we
can make a variable-length scheme that assigns them single-bit codes, while re-
taining two-bit codes for the other characters (still enough for a shave and a
haircut).
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A 01
F 0
I 10
R 1

1 10 0 0 1 01 0 0
R I F F R A F F

The message now takes only ten bits—or so it seems. The problem is that the
boundaries between the letters are not part of the information sent or stored.
The bit sequence 1100010100 is ambiguous, alternately interpreted as

A 01
F 0
I 10
R 1

1 1 0 0 01 0 10 0
R R F F A F I F

This problem is not inherent to variable-length codes, though. We can make
an unambiguous variable-length code by making sure that no character has an
encoding that is a prefix of another character’s encoding, as in the code above 0

for F is a prefix of 01 for A. So, trying again, here is a prefix-free variable-length
encoding scheme for this example:

A 111
F 0
I 110
R 10

10 110 0 0 10 111 0 0
R I F F R A F F

The message now takes 14 bits—only a slight win over the fixed-length ver-
sion of this example, but the benefits increase with larger messages containing
more distinct characters. Our goal in this section to discover a way to build
an optimal encoding scheme for a given message—and to encode and decode
messages with such encoding schemes.

{F R I A} 8

{R I A} 4

R 2

F 4
{I A} 2

A 1I 1

We move our attention from how we represent the encoded mes-
sage to how we will represent the encoding itself. Instead of think-
ing of it as a table in which we can look up the code for a character
or the character for a code, imagine the encoding scheme as a full
binary tree. Each leaf will store or represent a character. The code
for that character will be a description of the path from the root
of the tree to the leaf holding that character. Consider the tree at
the left, which represents the same encoding scheme as the most

recent table. Let 0 indicate taking a the branch of a left child and 1 indicate the
right. The route from the root to the leaf containing I is right, right, left, which
matches the code for I, 110.

The internal nodes contain strings indicating the characters found in the
subtrees rooted there. So if we want to encode the character R, we start from
the root and notice that the root’s right child contains R in its string. We go
right, and 1 is the first bit in the encoded form of the character. Next we notice
that that node (R I A) has a left child that contains R, so we go left. Now we
have reached the leaf for R and have found the code for R to be 10.
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6.12. EXTENDED EXAMPLE: HUFFMAN ENCODING

Additionally, the leaves contain the frequency of their character’s occur-
rences in the message and internal nodes contain the sum of the frequencies
of the characters in the subtree. These frequencies are not used in encoding or
decoding the message, but we will use them in building the tree itself.

Here is an ML datatype for Huffman trees.

- datatype huffTree =

= Leaf of char * int

= | Internal of huffTree * huffTree * string * int;

Recall that char is the ML type for values of a single character. A character
literal, for example the character A, is written #"A".

Now we will implement a system to build a tree based on letter frequencies
in a text, encode a text using the tree, and decode the text, also using the tree.
First, a few convenience functions for analyzing and synthesizing trees. We
wish to be able to find the frequency of a node, whatever it is; similarly to find
all the symbols at a node; to make a tree from two nodes; and to print the tree
in a way somewhat readable.

- fun freq(Leaf(sym, f)) = f

= | freq(Internal(left, right, sym, f)) = f;

val freq = fn : huffTree -> int

- fun symbols(Leaf(sym, f)) = str(sym)

= | symbols(Internal(left, right, sym, f)) = sym;

val symbols = fn : huffTree -> string

- fun makeTree(left, right) =

= Internal(left, right, symbols(left) ^ symbols(right),

= freq(left) + freq(right));

val makeTree = fn : huffTree * huffTree -> huffTree

- fun printTree(Leaf(sym, f)) =

= print("Leaf(\"" ^ str(sym) ^ "\", " ^

= Int.toString(f) ^ ")")

= | printTree(Internal(left, right, syms, f)) =

= (print("makeTree("); printTree(left);

= print(", "); printTree(right); print(")"));

val printTree = fn : huffTree -> unit
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The above makes use of the standard ML function str which converts a char
to a string of length 1.

Suppose we want to encode the text ANNIKA ISAAC AND SILAS VANDRUNEN.
Spaces count as characters. We want to count up the frequency of the various
letters and make a list of pairs containing a character and its frequency. We will
need to iterate over the characters in the string and add them to such a list.

Suppose we have such a list, possibly empty, and want to account for an-
other character. Either the character already appears in the list (in which case
we would increment its frequency), or the character does not yet appear (in
which case we would add it, with frequency 1). In building a function to do
this, we break this into three cases: the list is empty, the list begins with the
letter we are adding, and the list begins with a different character.

- fun addCharToFreqList(c, []) = [(c, 1)]

= | addCharToFreqList(c, (x, f)::rest) =

= if c = x then (x,f+1)::rest

= else (x,f)::addCharToFreqList(c, rest);

Warning: calling polyEqual

val addCharToFreqList = fn

: ’’a * (’’a * int) list -> (’’a * int) list

The ML interpreter cannot determine that we mean a list of characters, but
that is not a problem. Now we write two functions that will apply this to every

Tangent: Talking with the eyes

In Alexandre Dumas’s novel The Count of Monte Cristo, a character named Noirtier de Villefort suffers a stroke
and is left completely paralyzed, able to control only his eyes and eyelids. With these alone he develops a 
means of communicating his basic needs to his granddaughter, for example closing his eyes to say “yes” and 
blinking repeatedly to say “no.”
 More complicated thoughts could be expressed through these building blocks. At one point, when his 
granddaughter sensed he wanted something,

. . . she began to recite all the letters of the alphabet, starting with a, until she got to n, 
smiling and watching the invalid’s face; at n, Noirtier indicated: “Yes.”
“So!” Valentine said. “Whatever you want starts with n. And what do we want after n? 
Na, ne, ni, no. . . ”
“Yes, yes, yes,” the old man said.
Valentine went to fetch a dictionary, which she put on a reading stand in front of Noirtier. 
She opened it and when she saw that he was looking attentively at the pages, she ran her 
finger up and down the columns. At the word notary, Noirtier signalled her to stop.

 After Valentine teaches the method of communication to the notary, Noirtier is able even to rewrite his 
will. The principle of systems like the Huffman encoding are not so different: as a series of yeses and noes 
directs the search of a dictionary, so here a series of bits describes a path in a tree.

6
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letter in a list of characters and finally convert a message to a list of character-
frequency pairs. Recall that explode takes a string and returns a list of the
characters in the string.

- fun charListToFreqList([]) = []

= | charListToFreqList(c::rest) =

= addCharToFreqList(c, charListToFreqList(rest));

val charListToFreqList = fn : ’’a list -> (’’a * int) list

- fun msgToFreqList(msg) = charListToFreqList(explode(msg));

val msgToFreqList = fn : string -> (char * int) list

- val namePairs = msgToFreqList("ANNIKA ISAAC AND SILAS VANDRUNEN");

val namePairs =

[(#"N",6),(#"E",1),(#"U",1),(#"R",1),(#"D",2),(#"A",7),

(#"V",1),(#" ",4),(#"S",3),(#"L",1),(#"I",3),(#"C",1),...]

: (char * int) list

Once we have a list with accurate frequency counts for each character,
we want to turn those character-frequency pairs into leaves of the tree. The
function makeLeafSet converts a list of pairs into a list of leaves, sorting the
leaves in increasing order of frequency as it goes. It makes use of the func-
tion adjoinSet which acts like the cons operator except that it sorts as it goes.
Writing the function adjoinSet is left as a project.

- fun makeLeafSet([]) = []

= | makeLeafSet((sym, f)::morePairs) =

= adjoinSet(Leaf(sym, f), makeLeafSet(morePairs));

val makeLeafSet = fn : (char * int) list -> huffTree list

- val leafList = makeLeafSet(namePairs);

val leafList =

[Leaf (#"K",1),Leaf (#"C",1),Leaf (#"L",1),Leaf (#"V",1),

Leaf (#"R",1),Leaf (#"U",1),Leaf (#"E",1),Leaf (#"D",2),

Leaf (#"I",3),Leaf (#"S",3),Leaf (#" ",4),Leaf (#"N",6),

Leaf (#"A",7)]

: huffTree list
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K 1 C 1 L 1 R 1 U 1V 1 E 1 D 2 I 3 S 3 _ 4 N 6 A 7[ ]

Right now we have a big set of trivial trees. We will maintain this set as a
set of trees, but at each step will will merge two of them together to make a
bigger tree until we are left with a single tree, which will be our encoding.

A tree that meets our goal of minimizing the message encoding will have
the most frequently used characters closest to the root and the least frequently
used at the end of the longest sequence of links. Therefore our strategy is to
merge smallest-frequency trees. Our list is sorted by frequency, so the first two
items will have a frequency at least as small as all other items in the list. The
function oneMerge takes a list of huffTree nodes and merges the first two into a
new tree.

- fun oneMerge(x::y::rest) = adjoinSet(makeTree(x,y), rest);

Warning: match nonexhaustive

x :: y :: rest => ...

val oneMerge = fn : huffTree list -> huffTree * huffTree list

- oneMerge(leafList);

val it =

[Leaf (#"L",1),Leaf (#"V",1),Leaf (#"R",1),Leaf (#"U",1),

Leaf (#"E",1),Leaf (#"D",2),Internal (Leaf (#"K",1),

Leaf (#"C",1),"KC",2),Leaf (#"I",3),Leaf (#"S",3),

Leaf (#" ",4),Leaf (#"N",6),Leaf (#"A",7)]

: huffTree list

I 3 S 3 _ 4 N 6 A 7 ]{KC} 2D 2E 1U 1R 1V 1L 1[

K 1 C 1

The function successiveMerge repeats this process until we have a sin-
gle tree. It, too, is left as a project. We can also combine successiveMerge

with makeLeafSet to form a function that will generate a tree given a list of
character-frequency pairs:

- fun generateHuffTree(pairs) =

= successiveMerge(makeLeafSet(pairs));

val generateHuffTree = fn : (char * int) list -> huffTree

- val nameTree = generateHuffTree(namePairs);
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val nameTree =

(Internal (Internal #,Leaf #,"SEDA",13),

Internal (Internal #,Internal #," KCLVRUIN",19),

"SEDA KCLVRUIN",32)

: huffTree

{ED} 3S 3

E 1 D 2

{SED} 6 A 7

K 1 C 1 L 1 V 1

N 6

{RU} 2 I 3

R 1 U 1

{RUI} 5

{SEDA} 13

{KC} 2 {LV} 2

{RUIN} 11

_ 4

{_KCLV} 8

{KCLV} 4

{_KCLVRUIN} 19

{SEDA_KCLVRUIN} 32

Now we use this tree to encode the message. The function encodeSymbol

takes a character and a Huffman tree and finds the code for that symbol by
traversing the tree. It returns a list of bits (which we define below in a datatype),
that serves as a record of the search and, thus, the encoding for that character.
This function is left as a project. Once it is written, we can use it to encode an
entire list of characters into a list of bit sequences. Recall that explode takes a
string and returns a list of the characters in the string.

- datatype bit = One | Zero;

datatype bit = One | Zero

- fun encodeList([], tree) = []

= | encodeList(fst::rest, tree) =

= encodeSymbol(fst, tree)@encodeList(rest, tree);

val encodeList = fn : char list * huffTree -> bit list

- fun encode(msg, tree) = encodeList(explode(msg), tree);

val encode = fn : string * huffTree -> bit list

- val msg = encode("ANNIKA ISAAC AND SILAS VANDRUNEN",

= nameTree);
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val msg = [Zero,One,One,One,One,One,One,One,One,One,Zero,...]

: bit list

Notice our message is a simple list of bits, not a list of list of bits. We do not
show the boundaries of the letters in our message.

Decoding the message, a final part of the project, uses the bit sequence to
traverse the tree. When it hits a leaf, it adds a new character to the result and
goes back to the top of the tree.

- decode(msg, nameTree);

val it = "ANNIKA ISAAC AND SILAS VANDRUNEN" : string

This section was adapted from Abelson and Sussman[1].

Project

6.A Finish the following function adjoinSet, which
takes a tree and a list of trees and places the tree
in the right place in the list to maintain that list
as sorted by frequency.

fun adjoinSet(x, []) = [x]

| adjoinSet(x, fst::rest) =

if freq(x) < freq(fst)

then ??

else ?? ;

6.B Finish the function successiveMerge. It should

make use of oneMerge to do each step of
the merging, but it should also make use
of your adjoinSet to maintain sortedness.
In other words, you may assume in writing
successiveMerge that any list your function re-
ceives is already sorted, but this means that any
recursive call to successiveMerge must pass a
list that is also sorted. Remember also that
adjoinSet returns a list of pairs.

fun successiveMerge([x]) = x

| successiveMerge(x::y::rest) = ?? ;

Biography: David Huffman, 1925–1999

David Huffman was a computer scientist who made important contributions to 
information theory. After serving in the Navy in World War II, Huffman attended 
graduate school at MIT. While there he took a certain course that gave students 
the option of writing a term paper to get out of the final exam. It was in that term 
paper that Huffman presented his most famous result, the encoding scheme that 
bears his name. Although widely used in industry, the encoding was never 
patented, leading some to observe that his “main compensation was dispensation 
from a final exam” [30].
 Huffman taught at MIT and the University of California Santa Cruz, where 
he helped found the computer science department. His later work included 
research into paper folding and computational origami.
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Project, continued

6.C Finish the function encodeSymbol. It uses the
case and option ML language features described
in Section 2.5.

fun encodeSymbol(sym, tree) =

let

fun encodeSymbol1(sy, Leaf(st, f)) =

??

| encodeSymbol1(sy,Internal(left,right,

st,f)) =

case (encodeSymbol1(sy, left),

encodeSymbol1(sy, right)) of

(NONE, NONE) => ??

| (NONE, SOME bits) => ??

| (SOME bits, x) => ?? ;

in

valOf(encodeSymbol1(sym,tree))

end;

(This all assumes that every character in the mes-
sage actually occurs somewhere in the tree. If
not, encodeSymbol1 will return NONE, and the line
valOf(encodeSymbol1(sym, tree)) will crash.
Furthermore, the pattern (SOME bits, x) as-
sumes x will always be NONE.)

6.D Finish the function decode. It makes use of a

function called implode, which is a standard ML
function and does the opposite of what explode
does: it turns a list of characters into a string.

fun chooseBranch(Zero,

Internal(left, right, st, f)) =

left

| chooseBranch(One,

Internal(left, right, st, f)) =

right;

fun decode(bits, tree) =

let

fun decode1([], currentBranch) = []

| decode1(b::rest, currentBranch) =

let val nextBranch = ?? in

case nextBranch of

Leaf(sym, w) => ??

| Internal(left, right, syms, w)

=> ??

end;

in

implode(decode1(bits, tree))

end;
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