Set operations and facts about sets

Slides to accompany Sections 1.(4 \& 5) of Discrete Mathematics and Functional Programming

Thomas VanDrunen

Operations from arithmetic

These operations on numbers produce new numbers．
Grammatically，they are equivalent to nouns．

$$
5+3 \quad 12-7 \quad(18 \cdot 13) \div 21
$$

These operations produce a true or false value．Grammatically， they are equivalent to declarative sentences．

$$
5+3=8 \quad 17>18 \div 6 \quad(15+4) \cdot 21 \leq 3-2
$$

Operations on sets

We have two main sentence-making operations for sets:
$A=B$, meaning A and B have exactly the same elements.
$B \subseteq A$ meaning every element in B is an element in $A ; B$ is a subset of A.

$$
B \subseteq A
$$

Also we have proper subset $B \subset A$, meaning $B \subseteq A$ but $B \neq A$, or at least one element of A isn't in B. Similarly we have superset $B \supseteq A$ and proper superset $B \supset A$. These aren't used very often, but $\subseteq, \subset, \supseteq, \supset$ are analogous to $\leq,<, \geq,>$.

Set－making operations：Union

We have three operations on sets that result in new sets．The union of two sets is the set of elements that are in either set．

$$
\begin{aligned}
& \{1,2,3\} \cup\{2,3,4\}
\end{aligned}=\{1,2,3,4\}, \text { (} \begin{aligned}
& =B=\{x \mid x \in A \text { or } x \in B\} \\
\{1,2\} \cup\{3,4\} & =\{1,2,3,4\} \\
& \{1,2\} \cup\{1,2,3\}
\end{aligned}=\{1,2,3\}
$$

Set-making operations: Intersection

The intersection of two sets is the set of elements that are in both sets.

$$
\begin{aligned}
\{1,2,3\} \cap\{2,3,4\} & =\{2,3\} \\
\{1,2\} \cap\{3,4\} & =\emptyset \\
\{1,2\} \cap\{1,2,3\} & =\{1,2\}
\end{aligned}
$$

Set－making operations：Difference

The difference of two sets is the set of elements that are in the first set but not in the second．

$$
\begin{aligned}
\{1,2,3\}-\{2,3,4\} & =\{1\} \\
\{1,2\}-\{3,4\} & =\{1,2\} \\
\{1,2\}-\{1,2,3\} & =\emptyset
\end{aligned}
$$

Set-making operations: All together

Union

The set of elements that are in either set.

$$
A \cup B=\{x \mid x \in A \text { or } x \in B\}
$$

$$
\begin{aligned}
\{1,2,3\} \cup\{2,3,4\} & =\{1,2,3,4\} \\
\{1,2\} \cup\{3,4\} & =\{1,2,3,4\} \\
\{1,2\} \cup\{1,2,3\} & =\{1,2,3\}
\end{aligned}
$$

$$
\begin{aligned}
\{1,2,3\} \cap\{2,3,4\} & =\{2,3\} \\
\{1,2\} \cap\{3,4\} & =\emptyset \\
\{1,2\} \cap\{1,2,3\} & =\{1,2\}
\end{aligned}
$$

$$
\begin{aligned}
\{1,2,3\}-\{2,3,4\} & =\{1\} \\
\{1,2\}-\{3,4\} & =\{1,2\} \\
\{1,2\}-\{1,2,3\} & =\emptyset
\end{aligned}
$$

Set complement

The universal set, \mathcal{U}, is the set of all elements under discussion. This allows us to define the complement of a set, the set of everything not in given set:

$$
\bar{X}=\{x \in \mathcal{U} \mid x \notin X\}
$$

Complement is the analogue of negation (that is, the negative sign) in arithmetic. They are both unary operators, which means they take only one parameter.

Combining set operations

Set operations can be arbitrarily combined.

Observations about set operations

$$
\begin{aligned}
& \text { Let } A=\{1,2,3\}, B=\{3,4,5\} \text {, and } C=\{5,6,7\} \text {. } \\
& \qquad \begin{aligned}
A \cup(B \cap C) & =\{1,2,3\} \cup(\{3,4,5\} \cap\{5,6,7\}) \\
& =\{1,2,3\} \cup\{5\} \\
& =\{1,2,3,5\}
\end{aligned}
\end{aligned}
$$

and

$$
\begin{aligned}
(A \cup B) \cap(A \cup C) & =(\{1,2,3\} \cup\{3,4,5\}) \cap(\{1,2,3\} \cup\{5,6,7\}) \\
& =\{1,2,3,4,5\} \cap\{1,2,3,5,6,7\} \\
& =\{1,2,3,5\}
\end{aligned}
$$

In other words, for these sets A, B, and C,

$$
A \cup(B \cap C)=(A \cup B) \cap(A \cup C)
$$

Hypotheses about set operations

We suspect that for any three sets A, B, and C,

$$
A \cup(B \cap C)=(A \cup B) \cap(A \cup C)
$$

This would be a distributive law, analogous to the distributive law of arithmetic you learned in grade school:

$$
x \cdot(y+z)=x \cdot y+x \cdot z
$$

$A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$ is also true. . . see Exercise 1.5.4.

Facts about set operations

A large part of this course is about proving facts about sets formally．Before we get to writing proofs，we can verify facts like this informally using Venn diagrams．
Start with a blank template．

Verifying facts about sets

Shade A with \square and $B \cap C$ with \square. The overlap $A \cap(B \cap C)$ has the darkest tint \square,

Verifying facts about sets

Separately, superimpose $A \cup B$ shaded \square and $A \cup C$ shaded \square.

To get

The overlap $(A \cap B) \cup(A \cap C)$ is shaded \square

Verifying facts about sets

Put together, we see that anything shaded on the left matches the darkly (or double) shaded on the right.

(Any shade)

$(A \cap B) \cup(A \cap C)$
(Double shade)

Verifying facts about sets

Another example:

$$
\bar{A} \cup B=\overline{A-B}
$$

Intuition: Alvin, Beverley, Camus, Daisy, Eddie, and Gladys are cattle. Let A be the set of cows. $A=\{$ Beverley, Daisy, Gladys $\}$. Let $B=\{$ Alvin, Beverley, Camus, Gladys $\}$ be the spotted ones.

```
Bulls or spotted: }\overline{A}\cupB=\overline{{Beverley, Daisy, Gladys}}\cup{Alvin, Beverley, Camus, Gladys
    = {Alvin, Camus, Eddie} \cup{Alvin, Beverley, Camus, Gladys}
    = {Alvin, Beverley, Camus, Eddie, Gladys}
    = \overline{ Daisy }}
    = \overline { \{ B e v e r l e y , D a i s y , ~ G l a d y s \} ~ - ~ \{ A l v i n , ~ B e v e r l e y , ~ C a m u s , ~ G l a d y s \} }
    = \overline{A-B}
```


Verifying facts about sets

Visually:

Original

$B \square$

