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Reflexivity

A relation R on a set X is reflexive
if every element is related to itself:

∀ x ∈ X , (x , x) ∈ R



Symmetry

A relation R on a set X is symmet-
ric if for every pair in the relation,
the inverse of the pair also exists:

∀ x , y ∈ X , if (x , y) ∈ R
then (y , x) ∈ R



Transitivity

A relation R on a set X is tran-
sitive if any time one element is
related to a second and that sec-
ond is related to a third, then the
first is also related to the third:

∀ x , y , z ∈ X , if (x , y) ∈ R
and (y , z) ∈ R,
then (x , z) ∈ R



Summary

∀ x ∈ X , (x , x) ∈ R ∀ x , y ∈ X , if (x , y) ∈ R
then (y , x) ∈ R

∀ x , y , z ∈ X , if (x , y) ∈ R
and (y , z) ∈ R,
then (x , z) ∈ R



Proof patterns

∀ x ∈ X , (x , x) ∈ R ∀ x , y ∈ X , if (x , y) ∈ R
then (y , x) ∈ R

∀ x , y , z ∈ X , if (x , y) ∈ R
and (y , z) ∈ R,
then (x , z) ∈ R

Suppose x ∈ X .
. . .
Hence (x , x) ∈ R.
Therefore R is re-
flexive. �

Suppose x , y ∈ X .
Further suppose
(x , y) ∈ R.
. . .
Hence (y , x) ∈ R.
Therefore R is sym-
metric. �

Suppose x , y , z ∈
X . Further sup-
pose (x , y) ∈ R and
(y , z) ∈ R.
. . .
Hence (x , z) ∈ R.
Therefore R is tran-
sitive. �



Proof patterns—short versions

∀ x ∈ X , (x , x) ∈ R ∀ x , y ∈ X , if (x , y) ∈ R
then (y , x) ∈ R

∀ x , y , z ∈ X , if (x , y) ∈ R
and (y , z) ∈ R,
then (x , z) ∈ R

Suppose x ∈ X .
. . .
Hence (x , x) ∈ R.
Therefore R is re-
flexive. �

Suppose (x , y) ∈ R.
. . .
Hence (y , x) ∈ R.
Therefore R is sym-
metric. �

Suppose (x , y) ∈ R
and (y , z) ∈ R.
. . .
Hence (x , z) ∈ R.
Therefore R is tran-
sitive. �



Reflexivity example

Proposition 1

The relation | on N is reflexive.
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Reflexivity example

Proposition 1

The relation | on N is reflexive.

Proof. Suppose a ∈ N.
By arithmetic a · 1 = a, and so by the definition of
divides, a|a.
Hence, by the definition of reflexive, | is reflexive. �



Symmetry example

Proposition 2

The relation “is opposite of” on Z is symmetric.
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Proposition 2

The relation “is opposite of” on Z is symmetric.

Proof. Suppose x , y ∈ Z. Further suppose x + y = 0.
y + x = x + y by commutativity of addition. y + x = 0
by substitution.



Symmetry example

Proposition 2

The relation “is opposite of” on Z is symmetric.

Proof. Suppose x , y ∈ Z. Further suppose x + y = 0.
y + x = x + y by commutativity of addition. y + x = 0
by substitution.
Therefore “is opposite of” is symmetric. �



Transitivity example

Proposition 3

The relation | on Z is transitive.
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Proof. Suppose a, b, c ∈ Z, and suppose a|b and b|c.
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Proposition 3

The relation | on Z is transitive.

Proof. Suppose a|b and b|c.
By the definition of divides, there exist d , e ∈ Z such
that a · d = b and b · e = c. By substitution and
associativity, a(d · e) = c.



Transitivity example

Proposition 3

The relation | on Z is transitive.

Proof. Suppose a|b and b|c.
By the definition of divides, there exist d , e ∈ Z such
that a · d = b and b · e = c. By substitution and
associativity, a(d · e) = c.
By the definition of divides, a|c.



Transitivity example

Proposition 3

The relation | on Z is transitive.

Proof. Suppose a|b and b|c.
By the definition of divides, there exist d , e ∈ Z such
that a · d = b and b · e = c. By substitution and
associativity, a(d · e) = c.
By the definition of divides, a|c. Hence | is transitive. �
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Reflexivity example

Proposition 4

If R is reflexive, then iA ⊆ R.

Proof. Suppose R is reflexive. Further suppose that
(a, b) ∈ iA.
By definition of identity relation, a = b. By definition of
reflexivity, since R is reflexive, (a, b) ∈ R.



Reflexivity example

Proposition 4

If R is reflexive, then iA ⊆ R.

Proof. Suppose R is reflexive. Further suppose that
(a, b) ∈ iA.
By definition of identity relation, a = b. By definition of
reflexivity, since R is reflexive, (a, b) ∈ R.
Therefore, by definition of subset, iA ⊆ R. �
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Proposition 5

If R is a relation on a set A, then R ∩ R−1 is symmetric.

Proof. Suppose R is a relation on a set A. Next,
suppose a, b ∈ A. Finally, suppose (a, b) ∈ R ∩ R−1.
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Symmetry example

Proposition 5

If R is a relation on a set A, then R ∩ R−1 is symmetric.

Proof. Suppose R is a relation on a set A. Further
suppose (a, b) ∈ R ∩ R−1.
By definition of intersection, (a, b) ∈ R and (a, b) ∈ R−1.
Since (a, b) ∈ R, the definition of inverse tells us that
(b, a) ∈ R−1. Similarly, since (a, b) ∈ R−1, by definition
of inverse it is also the case that (b, a) ∈ R.
By definition of intersection, (b, a) ∈ R ∩ R−1.



Symmetry example

Proposition 5

If R is a relation on a set A, then R ∩ R−1 is symmetric.

Proof. Suppose R is a relation on a set A. Further
suppose (a, b) ∈ R ∩ R−1.
By definition of intersection, (a, b) ∈ R and (a, b) ∈ R−1.
Since (a, b) ∈ R, the definition of inverse tells us that
(b, a) ∈ R−1. Similarly, since (a, b) ∈ R−1, by definition
of inverse it is also the case that (b, a) ∈ R.
By definition of intersection, (b, a) ∈ R ∩ R−1. Therefore
R ∩ R−1 is symmetric by definition. �
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Proof. Suppose R is a relation on A and for all a ∈ A,
IR(IR(a)) ⊆ IR(a)).
Further suppose that (b, c), (c , d) ∈ R.
By definition of image, c ∈ IR(b). By definition of
image, d ∈ IR(IR(b)) By definition of subset, d ∈ IR(b).
By definition of image, (b, d) ∈ R.
Therefore R is transitive by definition. �



Proof patterns
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then (y , x) ∈ R
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Suppose x ∈ X .
. . .
Hence (x , x) ∈ R.
Therefore R is re-
flexive. �

Suppose x , y ∈ X .
Further suppose
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Hence (y , x) ∈ R.
Therefore R is sym-
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Suppose x , y , z ∈
X . Further sup-
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. . .
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sitive. �
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