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Reflexivity

A relation R on a set X is reflexive
if every element is related to itself:

VxeX,(x,x) €R




Symmetry

A relation R on a set X is symmet-
N, ric if for every pair in the relation,

/ the inverse of the pair also exists:
v
® Vx,yeX, if (x,y)€R

then (y,x) € R



Transitivity

A relation R on a set X is tran-
sitive if any time one element is

/’—’_\
Q related to a second and that sec-
ond is related to a third, then the
first is also related to the third:

Vx,y,ze X, if (x,y)€R
and (y,z) € R,
then (x,z) € R



Summary

Vx,y,zeX, if (x,y)eR
and (y,z) €R,
then (x,z) € R

hog

VxeX,(x,x)ER Vx,yeX, if (x,y)eR
then (y,x) € R




Proof patterns

VxeX,(x,x)eR

Suppose x € X.

Hence (x,x) € R.
Therefore R is re-
flexive. O

Vx,yeX, if (x,y)eR
then (y,x) € R

Suppose x,y € X.
Further suppose
(x,y) € R.

Hence (y,x) € R.
Therefore R is sym-
metric. [

Vx,y,ze X, if (x,y)€R
and (y,z) €R,
then (x,z) € R

Suppose x,y,z €
X. Further sup-
pose (x,y) € R and
(y,z) €R.

Hence (x,z) € R.
Therefore R is tran-
sitive.



Proof patterns—short versions

VxeX,(x,x)€R

Suppose x € X.

Hence (x, x) € R.
Therefore R is re-
flexive. O

Vx,yeX, if (x,y)eR
then (y,x) € R

Suppose (x,y) € R.

Hence (y,x) € R.
Therefore R is sym-
metric. [J

Vx,y,ze X, if (x,y)€R
and (y,z) € R,
then (x,z) € R

Suppose (x,y) € R
and (y,z) € R.

Hence (x, z) € R.
Therefore R is tran-
sitive.



Reflexivity example

Proposition 1
The relation | on N is reflexive.
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Proposition 1

The relation | on N is reflexive.

Proof. Suppose a € N.
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Reflexivity example

Proposition 1
The relation | on N is reflexive.
Proof. Suppose a € N.

By arithmetic a-1 = a, and so by the definition of
divides, a|a.



Reflexivity example

Proposition 1

The relation | on N is reflexive.

Proof. Suppose a € N.

By arithmetic a-1 = a, and so by the definition of
divides, a|a.

Hence, by the definition of reflexive, | is reflexive. [



Symmetry example

Proposition 2
The relation “is opposite of” on Z is symmetric.



Symmetry example

Proposition 2

The relation “is opposite of” on Z is symmetric.

Proof. Suppose x,y € Z.



Symmetry example

Proposition 2

The relation “is opposite of” on Z is symmetric.

Proof. Suppose x,y € Z. Further suppose x + y = 0.



Symmetry example

Proposition 2
The relation “is opposite of” on Z is symmetric.

Proof. Suppose x,y € 7. Further suppose x +y = 0.
y + x = x + y by commutativity of addition.



Symmetry example

Proposition 2
The relation “is opposite of” on Z is symmetric.
Proof. Suppose x,y € Z. Further suppose x +y = 0.

v + x = x + y by commutativity of addition. y + x =0
by substitution.



Symmetry example

Proposition 2
The relation “is opposite of” on Z is symmetric.

Proof. Suppose x,y € 7. Further suppose x +y = 0.

Yy + x = x + y by commutativity of addition. y +x =0
by substitution.

Therefore “is opposite of " is symmetric. [
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Proposition 3
The relation | on Z is transitive.



Transitivity example

Proposition 3

The relation | on Z is transitive.

Proof. Suppose a, b, c € Z, and suppose a|lb and b|c.
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Transitivity example

Proposition 3

The relation | on Z is transitive.

Proof. Suppose a|b and b|c.

By the definition of divides, there exist d,e € Z such
that a-d = b and b- e = c. By substitution and
associativity, a(d - e) = c.



Transitivity example

Proposition 3
The relation | on Z is transitive.

Proof. Suppose a|b and b|c.

By the definition of divides, there exist d, e € Z such
that a-d = b and b- e = c¢. By substitution and
associativity, a(d - e) = c.

By the definition of divides, alc.



Transitivity example

Proposition 3
The relation | on Z is transitive.

Proof. Suppose a|b and b|c.

By the definition of divides, there exist d, e € Z such
that a-d = b and b- e = c¢. By substitution and
associativity, a(d - e) = c.

By the definition of divides, a|c. Hence | is transitive. O
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Proposition 4
If R is reflexive, then iy C R.



Reflexivity example

Proposition 4
If R is reflexive, then iy C R.

Proof. Suppose R is reflexive.



Reflexivity example

Proposition 4
If R is reflexive, then i C R.

Proof. Suppose R is reflexive. Further suppose that
(a, b) € ip.



Reflexivity example

Proposition 4
If R is reflexive, then iy C R.

Proof. Suppose R is reflexive. Further suppose that
(a, b) € ia.
By definition of identity relation, a = b.



Reflexivity example

Proposition 4
If R is reflexive, then ip C R.

Proof. Suppose R is reflexive. Further suppose that

(a, b) € ia.

By definition of identity relation, a = b. By definition of
reflexivity, since R is reflexive, (a, b) € R.



Reflexivity example

Proposition 4
If R is reflexive, then i C R.

Proof. Suppose R is reflexive. Further suppose that

(a, b) € ia.

By definition of identity relation, a = b. By definition of
reflexivity, since R is reflexive, (a, b) € R.

Therefore, by definition of subset, ix C R. [
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Proposition 5
If R is a relation on a set A, then RN R~ is symmetric.



Symmetry example

Proposition 5

If R is a relation on a set A, then RN R is symmetric.

Proof. Suppose R is a relation on a set A.



Symmetry example

Proposition 5
If R is a relation on a set A, then RN R~ is symmetric.

Proof. Suppose R is a relation on a set A. Next,
suppose a, b € A.



Symmetry example

Proposition 5
If R is a relation on a set A, then RN R~ is symmetric.

Proof. Suppose R is a relation on a set A. Next,
suppose a, b € A. Finally, suppose (a,b) € RN R7L.



Symmetry example

Proposition 5
If R is a relation on a set A, then RN R~ is symmetric.

Proof. Suppose R is a relation on a set A. Further
suppose (a,b) € RN R™L,



Symmetry example

Proposition 5
If R is a relation on a set A, then RN R~ is symmetric.
Proof. Suppose R is a relation on a set A. Further

suppose (a,b) € RNR™L.
By definition of intersection, (a,b) € R and (a, b) € R7L.



Symmetry example

Proposition 5

If R is a relation on a set A, then RN R is symmetric.

Proof. Suppose R is a relation on a set A. Further
suppose (a,b) € RN R™L.

By definition of intersection, (a,b) € R and (a, b) € R7L.
Since (a, b) € R, the definition of inverse tells us that
(b,a) € R™L. Similarly, since (a, b) € R™, by definition
of inverse it is also the case that (b, a) € R.



Symmetry example

Proposition 5
If R is a relation on a set A, then RN R~ is symmetric.

Proof. Suppose R is a relation on a set A. Further
suppose (a,b) € RN R~L.

By definition of intersection, (a,b) € R and (a, b) € R™1.
Since (a, b) € R, the definition of inverse tells us that
(b,a) € R1. Similarly, since (a, b) € R™1, by definition
of inverse it is also the case that (b, a) € R.

By definition of intersection, (b,a) € RN R™L.



Symmetry example

Proposition 5
If R is a relation on a set A, then RN R~ L is symmetric.

Proof. Suppose R is a relation on a set A. Further
suppose (a,b) € RNR™L,

By definition of intersection, (a,b) € R and (a, b) € R7L.
Since (a, b) € R, the definition of inverse tells us that
(b,a) € R™L. Similarly, since (a, b) € R™, by definition
of inverse it is also the case that (b, a) € R.

By definition of intersection, (b,a) € RN R~1. Therefore
RN R~ is symmetric by definition. [J
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Proposition 6

If R is a relation on A and for all a € A, Zr(Zr(a)) C Zgr(a)), then
R is transitive.



Transitivity example

Proposition 6
If R is a relation on A and for all a € A, Zr(Zr(a)) C Zgr(a)), then
R is transitive.

Proof. Suppose R is a relation on A and for all a € A,
Zr(Zr(a)) € Zr(a)).



Transitivity example

Proposition 6
If R is a relation on A and for all a € A, Zr(Zr(a)) C Zgr(a)), then
R is transitive.

Proof. Suppose R is a relation on A and for all a € A,
Ir(Zr(a)) < Ir(a)).
Further suppose that (b, c),(c,d) € R.



Transitivity example

Proposition 6
If R is a relation on A and for all a € A, Tr(Zr(a)) C Zgr(a)), then
R is transitive.

Proof. Suppose R is a relation on A and for all a € A,
Zr(Zr(a)) € Zr(a)).

Further suppose that (b, c),(c,d) € R.

By definition of image, ¢ € Zr(b).
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Transitivity example

Proposition 6

If R is a relation on A and for all a € A, Tr(Zr(a)) C Zr(a)), then
R is transitive.

Proof. Suppose R is a relation on A and for all a € A,
Ir(Zr(a)) € Zr(a)).

Further suppose that (b, c),(c,d) € R.

By definition of image, ¢ € Zgr(b). By definition of
image, d € Zr(Zr(b)) By definition of subset, d € Zg(b).
By definition of image, (b, d) € R.



Transitivity example

Proposition 6

If R is a relation on A and for all a € A, Zr(Zr(a)) C Zr(a)), then
R is transitive.

Proof. Suppose R is a relation on A and for all a € A,
Zr(Zr(a)) € Zr(a)).

Further suppose that (b, c),(c,d) € R.

By definition of image, ¢ € Zr(b). By definition of
image, d € Zr(Zr(b)) By definition of subset, d € Zg(b).
By definition of image, (b, d) € R.

Therefore R is transitive by definition. [



Proof patterns

VxeX,(x,x)eR

Suppose x € X.

Hence (x,x) € R.
Therefore R is re-
flexive. O

Vx,yeX, if (x,y)eR
then (y,x) € R

Suppose x,y € X.
Further suppose
(x,y) € R.

Hence (y,x) € R.
Therefore R is sym-
metric. [

Vx,y,ze X, if (x,y)€R
and (y,z) €R,
then (x,z) € R

Suppose x,y,z €
X. Further sup-
pose (x,y) € R and
(y,z) €R.

Hence (x,z) € R.
Therefore R is tran-
sitive.
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