Properties of relations

Slides to accompany Section 5.4 of *Discrete Mathematics and Functional Programming*

Thomas VanDrunen

(日) (四) (문) (문) (문)

Reflexivity

A relation *R* on a set *X* is *reflexive* if every element is related to itself:

$$\forall x \in X, (x, x) \in R$$

<ロ> (四) (四) (三) (三) (三)

Symmetry

A relation R on a set X is symmetric if for every pair in the relation, the inverse of the pair also exists:

$$\forall x, y \in X, ext{ if } (x, y) \in R \ ext{ then } (y, x) \in R$$

・ロト ・ 日 ・ ・ ヨ ・ ・

Transitivity

A relation R on a set X is *tran*sitive if any time one element is related to a second and that second is related to a third, then the first is also related to the third:

$$\forall x, y, z \in X, \text{ if } (x, y) \in R$$

and $(y, z) \in R$,
then $(x, z) \in R$

<ロト <四ト <注入 <注下 <注下 <

Summary

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

Proof patterns

 $\forall \ x \in X, (x, x) \in R$

$$\forall x, y \in X, \text{ if } (x, y) \in R$$

then $(y, x) \in R$

 $\forall x, y, z \in X, \quad \text{if } (x, y) \in R \\ \text{and } (y, z) \in R, \\ \text{then } (x, z) \in R \end{cases}$

Suppose $x \in X$.

Hence $(x, x) \in R$. Therefore R is reflexive. \Box Suppose $x, y \in X$. Further suppose $(x, y) \in R$.

Hence $(y, x) \in R$. Therefore *R* is symmetric. \Box

. . .

Suppose $x, y, z \in X$. Further suppose $(x, y) \in R$ and $(y, z) \in R$.

```
Hence (x, z) \in R.
Therefore R is transitive. \Box
```

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Proof patterns—short versions

$$\forall x \in X, (x, x) \in R \qquad \qquad \forall x, y \in X, \text{ if } (x, y) \in R \qquad \qquad \forall x, y, z \in X, \text{ if } (x, y) \in R \\ \text{ then } (y, x) \in R \qquad \qquad \qquad \text{ and } (y, z) \in R, \\ \text{ then } (x, z) \in R \qquad \qquad \text{ then } (x, z) \in R \\ \end{cases}$$

Suppose $x \in X$.

. . .

Suppose
$$(x, y) \in R$$
.

Hence $(x, x) \in R$. Therefore *R* is reflexive. \Box Hence $(y, x) \in R$. Therefore R is symmetric. \Box Suppose $(x, y) \in R$ and $(y, z) \in R$.

Hence $(x, z) \in R$. Therefore *R* is transitive. \Box

<ロト <四ト <注入 <注下 <注下 <

. . .

Proposition 1 The relation \mid on \mathbb{N} is reflexive.

Proposition 1

The relation \mid on \mathbb{N} is reflexive.

Proof. Suppose $a \in \mathbb{N}$.

Proposition 1

The relation \mid on \mathbb{N} is reflexive.

Proof. Suppose $a \in \mathbb{N}$. By arithmetic $a \cdot 1 = a$

(日) (四) (문) (문) (문)

Proposition 1

The relation \mid on \mathbb{N} is reflexive.

Proof. Suppose $a \in \mathbb{N}$. By arithmetic $a \cdot 1 = a$, and so by the definition of divides, a|a.

Proposition 1

The relation | on \mathbb{N} is reflexive.

Proof. Suppose $a \in \mathbb{N}$. By arithmetic $a \cdot 1 = a$, and so by the definition of divides, a|a. Hence, by the definition of reflexive, | is reflexive. \Box

Proposition 2 The relation "is opposite of" on \mathbb{Z} is symmetric.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Proposition 2

The relation "is opposite of" on \mathbb{Z} is symmetric.

Proof. Suppose $x, y \in \mathbb{Z}$.

Proposition 2

The relation "is opposite of" on \mathbb{Z} is symmetric.

Proof. Suppose $x, y \in \mathbb{Z}$. Further suppose x + y = 0.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Proposition 2

The relation "is opposite of" on \mathbb{Z} is symmetric.

Proof. Suppose $x, y \in \mathbb{Z}$. Further suppose x + y = 0. y + x = x + y by commutativity of addition.

Proposition 2

The relation "is opposite of" on \mathbb{Z} is symmetric.

Proof. Suppose $x, y \in \mathbb{Z}$. Further suppose x + y = 0. y + x = x + y by commutativity of addition. y + x = 0 by substitution.

Proposition 2

The relation "is opposite of" on \mathbb{Z} is symmetric.

Proof. Suppose $x, y \in \mathbb{Z}$. Further suppose x + y = 0. y + x = x + y by commutativity of addition. y + x = 0 by substitution. Therefore "is opposite of" is symmetric. \Box

Proposition 3 The relation | on \mathbb{Z} is transitive.

Proposition 3

The relation \mid on \mathbb{Z} is transitive.

Proof. Suppose $a, b, c \in \mathbb{Z}$, and suppose a|b and b|c.

(中) (문) (문) (문) (문)

Proposition 3 The relation \mid on \mathbb{Z} is transitive.

Proof. Suppose a|b and b|c.

(中) (문) (문) (문) (문)

Proposition 3

The relation \mid on \mathbb{Z} is transitive.

Proof. Suppose a|b and b|c. By the definition of divides, there exist $d, e \in \mathbb{Z}$ such that $a \cdot d = b$ and $b \cdot e = c$.

(日) (四) (문) (문) (문)

Proposition 3

The relation \mid on \mathbb{Z} is transitive.

Proof. Suppose a|b and b|c. By the definition of divides, there exist $d, e \in \mathbb{Z}$ such that $a \cdot d = b$ and $b \cdot e = c$. By substitution and associativity, $a(d \cdot e) = c$.

Proposition 3

The relation \mid on \mathbb{Z} is transitive.

Proof. Suppose a|b and b|c. By the definition of divides, there exist $d, e \in \mathbb{Z}$ such that $a \cdot d = b$ and $b \cdot e = c$. By substitution and associativity, $a(d \cdot e) = c$. By the definition of divides, a|c.

(日) (문) (문) (문) (문)

Proposition 3

The relation \mid on \mathbb{Z} is transitive.

Proof. Suppose a|b and b|c. By the definition of divides, there exist $d, e \in \mathbb{Z}$ such that $a \cdot d = b$ and $b \cdot e = c$. By substitution and associativity, $a(d \cdot e) = c$. By the definition of divides, a|c. Hence | is transitive. \Box

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●□ ● ●

Proposition 4 If *R* is reflexive, then $i_A \subseteq R$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Proposition 4

If R is reflexive, then $i_A \subseteq R$.

Proof. Suppose R is reflexive.

(中) (문) (문) (문) (문)

Proposition 4

If R is reflexive, then $i_A \subseteq R$.

Proof. Suppose R is reflexive. Further suppose that $(a, b) \in i_A$.

(中) (문) (문) (문) (문)

Proposition 4

If R is reflexive, then $i_A \subseteq R$.

Proof. Suppose R is reflexive. Further suppose that $(a, b) \in i_A$. By definition of identity relation, a = b.

Proposition 4

If *R* is reflexive, then $i_A \subseteq R$.

Proof. Suppose *R* is reflexive. Further suppose that $(a, b) \in i_A$. By definition of identity relation, a = b. By definition of reflexivity, since *R* is reflexive, $(a, b) \in R$.

Proposition 4

If R is reflexive, then $i_A \subseteq R$.

Proof. Suppose *R* is reflexive. Further suppose that $(a, b) \in i_A$. By definition of identity relation, a = b. By definition of reflexivity, since *R* is reflexive, $(a, b) \in R$. Therefore, by definition of subset, $i_A \subseteq R$. \Box

Proposition 5 If R is a relation on a set A, then $R \cap R^{-1}$ is symmetric.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Proposition 5

If R is a relation on a set A, then $R \cap R^{-1}$ is symmetric.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Proof. Suppose R is a relation on a set A.

Proposition 5

If R is a relation on a set A, then $R \cap R^{-1}$ is symmetric.

Proof. Suppose R is a relation on a set A. Next, suppose $a, b \in A$.

(日) (四) (문) (문) (문)

Proposition 5

If R is a relation on a set A, then $R \cap R^{-1}$ is symmetric.

Proof. Suppose R is a relation on a set A. Next, suppose $a, b \in A$. Finally, suppose $(a, b) \in R \cap R^{-1}$.

Proposition 5

If R is a relation on a set A, then $R \cap R^{-1}$ is symmetric.

Proof. Suppose R is a relation on a set A. Further suppose $(a, b) \in R \cap R^{-1}$.

Proposition 5

If R is a relation on a set A, then $R \cap R^{-1}$ is symmetric.

Proof. Suppose R is a relation on a set A. Further suppose $(a, b) \in R \cap R^{-1}$. By definition of intersection, $(a, b) \in R$ and $(a, b) \in R^{-1}$.

Proposition 5

If R is a relation on a set A, then $R \cap R^{-1}$ is symmetric.

Proof. Suppose R is a relation on a set A. Further suppose $(a, b) \in R \cap R^{-1}$. By definition of intersection, $(a, b) \in R$ and $(a, b) \in R^{-1}$. Since $(a, b) \in R$, the definition of inverse tells us that $(b, a) \in R^{-1}$. Similarly, since $(a, b) \in R^{-1}$, by definition of inverse it is also the case that $(b, a) \in R$.

《曰》 《聞》 《理》 《理》 三世

Proposition 5

If R is a relation on a set A, then $R \cap R^{-1}$ is symmetric.

Proof. Suppose R is a relation on a set A. Further suppose $(a, b) \in R \cap R^{-1}$. By definition of intersection, $(a, b) \in R$ and $(a, b) \in R^{-1}$. Since $(a, b) \in R$, the definition of inverse tells us that $(b, a) \in R^{-1}$. Similarly, since $(a, b) \in R^{-1}$, by definition of inverse it is also the case that $(b, a) \in R$. By definition of intersection, $(b, a) \in R \cap R^{-1}$.

Proposition 5

If R is a relation on a set A, then $R \cap R^{-1}$ is symmetric.

Proof. Suppose R is a relation on a set A. Further suppose $(a, b) \in R \cap R^{-1}$. By definition of intersection, $(a, b) \in R$ and $(a, b) \in R^{-1}$. Since $(a, b) \in R$, the definition of inverse tells us that $(b, a) \in R^{-1}$. Similarly, since $(a, b) \in R^{-1}$, by definition of inverse it is also the case that $(b, a) \in R$. By definition of intersection, $(b, a) \in R \cap R^{-1}$. Therefore $R \cap R^{-1}$ is symmetric by definition. \Box

Proposition 6

If R is a relation on A and for all $a \in A$, $\mathcal{I}_R(\mathcal{I}_R(a)) \subseteq \mathcal{I}_R(a)$, then R is transitive.

Proposition 6

If R is a relation on A and for all $a \in A$, $\mathcal{I}_R(\mathcal{I}_R(a)) \subseteq \mathcal{I}_R(a)$, then R is transitive.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Proof. Suppose *R* is a relation on *A* and for all $a \in A$, $\mathcal{I}_R(\mathcal{I}_R(a)) \subseteq \mathcal{I}_R(a)$).

Proposition 6

If *R* is a relation on *A* and for all $a \in A$, $\mathcal{I}_R(\mathcal{I}_R(a)) \subseteq \mathcal{I}_R(a)$, then *R* is transitive.

Proof. Suppose R is a relation on A and for all $a \in A$, $\mathcal{I}_R(\mathcal{I}_R(a)) \subseteq \mathcal{I}_R(a)$). Further suppose that $(b, c), (c, d) \in R$.

Proposition 6

If R is a relation on A and for all $a \in A$, $\mathcal{I}_R(\mathcal{I}_R(a)) \subseteq \mathcal{I}_R(a)$, then R is transitive.

Proof. Suppose R is a relation on A and for all $a \in A$, $\mathcal{I}_R(\mathcal{I}_R(a)) \subseteq \mathcal{I}_R(a)$. Further suppose that $(b, c), (c, d) \in R$. By definition of image, $c \in \mathcal{I}_R(b)$.

Proposition 6

If R is a relation on A and for all $a \in A$, $\mathcal{I}_R(\mathcal{I}_R(a)) \subseteq \mathcal{I}_R(a)$, then R is transitive.

Proof. Suppose R is a relation on A and for all $a \in A$, $\mathcal{I}_R(\mathcal{I}_R(a)) \subseteq \mathcal{I}_R(a)$). Further suppose that $(b, c), (c, d) \in R$. By definition of image, $c \in \mathcal{I}_R(b)$. By definition of image, $d \in \mathcal{I}_R(\mathcal{I}_R(b))$

(日) (문) (문) (문) (문)

Proposition 6

If R is a relation on A and for all $a \in A$, $\mathcal{I}_R(\mathcal{I}_R(a)) \subseteq \mathcal{I}_R(a)$, then R is transitive.

Proof. Suppose R is a relation on A and for all $a \in A$, $\mathcal{I}_R(\mathcal{I}_R(a)) \subseteq \mathcal{I}_R(a)$). Further suppose that $(b, c), (c, d) \in R$. By definition of image, $c \in \mathcal{I}_R(b)$. By definition of image, $d \in \mathcal{I}_R(\mathcal{I}_R(b))$ By definition of subset, $d \in \mathcal{I}_R(b)$.

Proposition 6

If R is a relation on A and for all $a \in A$, $\mathcal{I}_R(\mathcal{I}_R(a)) \subseteq \mathcal{I}_R(a)$, then R is transitive.

Proof. Suppose R is a relation on A and for all $a \in A$, $\mathcal{I}_R(\mathcal{I}_R(a)) \subseteq \mathcal{I}_R(a)$). Further suppose that $(b, c), (c, d) \in R$. By definition of image, $c \in \mathcal{I}_R(b)$. By definition of image, $d \in \mathcal{I}_R(\mathcal{I}_R(b))$ By definition of subset, $d \in \mathcal{I}_R(b)$. By definition of image, $(b, d) \in R$.

Proposition 6

If R is a relation on A and for all $a \in A$, $\mathcal{I}_R(\mathcal{I}_R(a)) \subseteq \mathcal{I}_R(a)$, then R is transitive.

Proof. Suppose R is a relation on A and for all $a \in A$, $\mathcal{I}_R(\mathcal{I}_R(a)) \subseteq \mathcal{I}_R(a)$). Further suppose that $(b, c), (c, d) \in R$. By definition of image, $c \in \mathcal{I}_R(b)$. By definition of image, $d \in \mathcal{I}_R(\mathcal{I}_R(b))$ By definition of subset, $d \in \mathcal{I}_R(b)$. By definition of image, $(b, d) \in R$. Therefore R is transitive by definition. \Box

Proof patterns

 $\forall \ x \in X, (x, x) \in R$

$$\forall x, y \in X, \text{ if } (x, y) \in R$$

then $(y, x) \in R$

 $\forall x, y, z \in X, \quad \text{if } (x, y) \in R \\ \text{and } (y, z) \in R, \\ \text{then } (x, z) \in R \end{cases}$

Suppose $x \in X$.

Hence $(x, x) \in R$. Therefore R is re-

flexive. 🗆

Suppose $x, y \in X$. Further suppose $(x, y) \in R$.

Hence $(y, x) \in R$. Therefore *R* is symmetric. \Box

. . .

Suppose $x, y, z \in X$. Further suppose $(x, y) \in R$ and $(y, z) \in R$.

Hence $(x, z) \in R$. Therefore *R* is transitive. \Box

. . .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Properties of relations

Slides to accompany Section 5.4 of *Discrete Mathematics and Functional Programming*

Thomas VanDrunen

(日) (四) (문) (문) (문)