Introducing Computer Science After Programming

Cary G. Gray
Wheaton College
Wheaton, Illinois

Cary.G.Gray@wheaton.edu

Michael D. Frazier
Abilene Christian University
Abilene, Texas
Mike.Frazier @cs.acu.edu

ABSTRACT

We describe replacement of amore traditional (CS1/CS2) introductory
sequence with one that starts after a one-semester programming-only course.
The change simplifies placement for entering students (whether from other
colleges or directly from high school), and the new structure more effectively
communicates the nature of the science to beginning students. The new
sequence accommodates the entering students who lack a high level of
mathematical maturity, but without compromising the mathematical nature of
themajor.

1 INTRODUCTION

The introductory computer science sequence at Abilene Christian University
(ACU) had evolved from the old programming-first model, adding survey material to
CS1in an attempt to give students areal taste of computer science early. Others have
noted similar concerns [HKK99, TBB98] and proposed avariety of structuresto meet
them, particularly following the suggestionsin [ACM91]. One of the key questions
has been how to relate the introduction of computer science as adisciplineto initial
instruction in programming.

ACU hasfairly open admissions standards, and many would-be computer science
majors arrive possessing alow level of mathematical maturity, though many have
prior programming experience. Since the fall of 1999 we have been using a novel
course structure that places the introduction to programming before the first course in
the mgjor. Whilethis structure was developed to deal with a specific student
population, we have found that the resulting structure offers significant advantages
that make it more broadly useful.

We describe in Section 2 the background and analysis that led to our proposal.
The new sequence is described in detail in Section 3, and our experience with it is
evaluated. Section 5 compares this structure with others and highlights why a similar
arrangement may be appropriate even for very different student populations.

Cs1 CS2 Algorithms

programming 1
recursion
programming 2
survey
elem. algorithms

int. algorithms

adv. algorithms

Figure 1: Old course structure

2 BACKGROUND AND ANALYSIS
ACU’s previousintroductory sequence

ACU offersa CS magjor that isintended as a science major—we want our students
to leanto think like scientists. Discrete Math isrequired ealy in the program so that
we can cover material more deeply (and efficiently) in appropriate major courses.

ACU’sintro sequence had evolved from the dassc (imperative) “programming
first” model, in which the two semesters of the first yea concentrated on
programming. We had previously found ouselves grugding with the “computer
scienceis programming’ misperception, and so we had added to the first semester a
significant eff ort to survey computer science, asin, for example, [HS97]. The seaond
semester included the beginning material on analysis of algorithms, suppated by a
Discrete Math corequisite.

Figure 1 showsthe dlocaion d material amongthese two courses and the junior-
level Algorithms and Advanced Data Structures which was required o all CS majors.
The moduesin the figure, with rough ascriptionin terms of CC2001[ACMO01]
knowledge units,” are:

programming 1 introductory programming and problem solving, wsing
procedures/functions and static data structures (PFL, PR2, and abou half of
PR3)

recursion first taste of reaursive functions (most of PH4)

programming 2 continued development of programming skill, including dyramic
(pointer-based) data structures, with strongemphasis on abstradion and
moduarity (remainder of PF3 and PH4, PL5, much of PL6)

survey asurvey of magor areas in computing and computer science not
exhaustive, but with enough lveadth to be representative (portions of AL2,
OS1,NC2,PL1,PL2,PL3, SPL, SP2, SM-7,AR3; most or al of AR2, ALS5,
1S1)

' Thiswork was dore prior to pubicaion o CC2001, so that our thinking more naturally maps onto
CC91[ACM91]], but we hope this description is more useful.

elementary algorithms first work with analysis of agorithms, typicdly via
sorting and searching (most of AL1, abou half of AL2 and AL3)

intermediate algorithms more advanced algorithms and their analysis; the
balance of the dgorithmic material essentia for every computer science major
(balanceof AL1-3,AL6, part of 1S2)

advanced algorithms additiona algorithmic material suitable for eledive
coursework (including AL8, AL10)

A significant number of students arrive & ACU with urredistic expedations abou
our mgjor. Wetherefore put spedal emphasisin the first semester on setting
expedations for the magjor througha survey of computing kroadly and computer
sciencein particular. We want students who are not interested in ou offeringsto
move quickly to amore gpropriate major so that they can graduate in atimely
manner. Requiring dscrete mathematics ealy in the amurse sequence dso helpsto set
redistic expedations.

ACU dso dfersaservice ourse, Introductionto Scientific Computing, as aone-
semester introductionto programming and aher issues for majorsin the hard sciences.
This course has often been taught by faaulty from ancther science department, for
whom Fortran is the preferred language. The programming material covered
corresponds to “programming 1’ in ou list of modues; the ourse dso addresses
other issues that arise in numericd cdculations.

Student population

Most students enter ACU as freshmen, dredly from high schod; the university as
awhaderecaves very few students who reave completed atwo-yea program at a
junior college. Many of our entering students have had some instructionin computer
programming: many have had a ourse in high schod; others have completed asinge
course & ajunior college. While many o the high schod courses quaify for credit
throughthe Advanced Placenent program, aimost all of our students have taken the
Computer Science A exam rather than the more alvanced Computer Science AB. As
a onsequence, the students with previous computing have typicdly been expased
only to programming, and typicaly to nomore programming than we aver in the first
semester.

In addition, admissonto ACU isfairly open, such that many students arrive with
limited mathematics badkground. A littl e over half require & least one semester of
mathematics before they can (or shoud) take Discrete Math,” and a significant number
require alditional remedial courses. The Discrete Math corequisiteto CS2 isa
significant barrier for these students.

A number of students expressinterest in taking computing coursework—perhaps
as much as completing aminor—>but are not interested in the computer science major.
We would like to serve these additional students, providingwe can doso without
compromising dferings for our mgjors.

? At ACU, the prerequisite to Discrete Math is Precdculus, thoughwe recommend that students without
cdculus credit complete asemester of cdculus before taking Discrete Math.

Motivation for change

Experiencein teading these murses, advising entering students, and deding with
transfer courses reveded several problems:

Placement from high school
Placanent of entering studentsis aproblem. Students come from high schod
with widely varying programming badkgrounds, but very few students have
significant exposure to the other material we @ver in ou introductory courses.
The single gredest chall enge of the first semester is grasping the processof
creaingaprogram, bu asignificant number of studentsin the dassarealy
have mastered that challenge. Thisleadsto two problems: boredom for the
more advanced students and intimidation for the lessadvanced.

Transfer articulation
Evaluation d transfer coursework was criticd to determine whether the
transferred course included enough & the survey material from CS1 to be
considered equivalent; in most adual casesit did nd. The cdalog description
alone was often insufficient to make the determination.

Internal articulation
Articulationis awkward for students who change magjors to CS after taking
Intro to Scientific Computing. Like students with programming experience
from high schod, they have mastered much of the programming content of our
first semester, but often do na have dl of the nonprogranming background
required by ou secndsemester.

Coursefocus
Eadh o the first two courses hastwo gaals, bu students have difficulty
keeping bdh in mind. Many studentsin the first semester are so overwhelmed
by leaningto program that they missthe significance of the survey material.
(Thisisfurther evidenced by students' persistencein referringto CS1 bythe
name of the programming language used.) Similarly, the programming
material in the seand semester tends to crowd ou in the students’ minds the
degoer material onanalysis of algorithms.

Discrete Math asa barrier
Almost all advanced CS courses build onmaterial from our second semester,
but the Discrete Math corequisite doses that course—and all subsequent
courses—to most ACU students.

3 THE NEW PROGRAM

We have aldressed these problems by redl ocating material from our first two
semesters—plus the junior-level Algorithms course—amongthreenew courses:

Introduction to Computers and Programming
A beginner’s coursein programming and roblem solving, supdemented by
additional material ontopics auch as history and social isaues to make it
valuable to a student who daes nat take alditional CS.

Fundamentals of Computer Science
survey of computing dsciplines; objed-oriented design, abstrad data types,
and fundamental data structures
prerequisite: Intro to Computers and Programming, a equivalent

Intro to Programming Fundamentals of CS Elem. Algorithms

programming 1
recursion
programming 2
survey
elem. algorithms
int. algorithms

enrichment material

Figure 2: New cour se structure

Elementary Algorithms and Data Structures
anaysis of agorithms and data structures
prerequisite: Fundamentals, Discrete Math

The allocation of material among these new coursesis shown in Figure 2.

The core of Intro to Programming is rather unambitious, leaving out the
introduction to recursion (and even ataste of pointers) that was included in our old
CS1. Theessentia requirements are low enough that we seldom have to worry about
whether transfer work is adequate to substitute for it.*> The instructor has considerable
freedom in choosing material to flesh out this course; the primary concern in that
selection is serving those who will not go on to more advanced work.

Each of the problems noted in the previous section is addressed by this
restructuring:

Placement from high school
Students with adequate programming background can be placed directly into
Fundamentals, which does not require the survey material that few high
schools (and the junior colleges we see transfers from) teach. Students with
little or no programming background spend a semester in Intro to
Programming focused on that one issue.

Transfer articulation
Granting transfer credit for the new Intro to Programming is much less risky
than for the old CS1. Transfer students with a stronger first semester course
face amix of new and familiar material in Fundamentals of CS.

Internal articulation
Intro to Scientific Computing, without change, now substitutes well for Intro to
Programming.

° On the other hand, few of our students transfer out after just one semester of CS.

Coursefocus
The first and third semesters eat have asingle focus, clealy refleded in their
titles. The two componrents of Fundamentals of CS are more nealy balanced
than in the old CS1.

Discrete Math asa barrier
Prerequisites for CS courses that had listed CS2 (and therefore implicitly
Discrete Math) have been reevaluated to identify those that require only
Fundamentals; courses that required the old advanced Algorithms have
changed to require only the new Elementary Algorithms.

The main drawbadk of this gructureisthat it expands our introductory material
from two semesters to threefor students who do na have previous programming
experience. For CS mgjors, the dimination d the advanced Algorithms course & bath
arequirement and a prerequisite off sets the increase, so that the total number of
semesters in sequenceremains the same. Also, becaise Fundamentals of CSisthe key
prerequisite murse, students can begin some more alvanced work in the same
semester that they are taking Elementary Algorithms.

The new arrangement does dill present an articulation problem for students who
enter ACU with more than a semester of college-level computing. Such students
might be ather transfers from other coll eges (espedally those with atraditional
CS1/CS2) or freshmen from avery strong AP Computer Science AB course (with
goodcoverage of analysis of algorithms). We seefew such students, however,
compared to the number who were poaly placead in ou old course sequence

With the new curriculum, bah the CS major and minor begin with Fundamentals
of Computer Science The Intro to Programming course does not appea asa
requirement in either program.” We have cmmeto view Intro to Programming as
analogous to Precdculus in a mathematics program: alarge share of students are
getting this material in high schod, bu it isfar from universal. We therefore provide
aleveling course before the major for those who ree it.

The placament of Discrete Math in the prerequisite structureis sgnificant. In
particular, Discrete Math nolonger lies onthe path to all advanced coursesin the CS
program. Thisremoves an acadental barrier that has kept math-averse students from
taking additional courses. We hope that thiswill alow usto doffer aminor in Applied
Computing to serve those students' interest in computing, withou dil uting the
experiencethat we (and ahers [TKBO01]) believeisvital to amgor in computer
science

4 EXPERIENCE

The new curriculum has been in placefor two yeas. Severa of the expeded
advantages $row up in advising and administrative cntexts:

* The cdaogtext—and espedally the murse titles—is more suppative of our
“computer scienceis not the same a programming’ message. Thismessageis

“Intro to Programming daes court toward the total required housin CS, so that the total hours of CS
required has nat increased. Students who begin in Fundamentals take an additional advanced course
instead. Previously, a petition to substitute more advanced work was required for those students whom
we placal ou of CS1; the new structure has eliminated the need for thase petitions.

further reinforced bythe fad that Intro to Programmingis not listed as amajor
requirement.

e Placement into the @rred introductory course has been grealy simplified.
Most students can be wrredly placed after a brief interview. The first
programming adivity in Fundamentals of CS helps to settle the few students
whose initial placament isincorred (with the scheduling d Intro to
Programming and Fundamentals of CS arranged to fadlit ate the move).

* Evauation d transfer coursework has been much easier; the more difficult
dedsion d when to consider transfer work as equivalent to Fundamentalsis
rare.

Benefits have dso been apparent in the dasgoom:

* Thetwin problems of intimidation and baedom are noticedly deaeased,
because studentsin ead classare doser to the samelevel. Thereductionin
need to explicitly compensate for intimidation d students without prior
programming experienceis espedaly naticedle.

* All threeof the new courses £an much more wherent than ou old CS1/CS2.

In addition, we ae &le to make much more use of Discrete Math as a prerequisite
to Elementary Algorithms than we were with it as a corequisite to CS2. That delay
also gves gudents alittl e more time to mature mathematicdly.

Fundamentals of CS remains arather ambiti ous course, with its dual goals
refleded in the use of apair of textbooks, one for survey materia (such as[Bro97)
and the other for the programming material. Two aspeds of our approad to this
course help it to cohere, even in the minds of students: the programming exercises are
chasen to work with the key ideas in the survey, and the entire courseis gructured
aroundthe theme of representation.

The theme of representation encompasses more than the encoding o data. It
includes representation o programs, including the ideaof levels of abstradion and
virtual maaiines. Analysis of the performancetrade-off s of diff erent data structures
demonstrates the significance of choice of representation. Different classes of
automata represent computational models, seeking aminimal representation that
achieves universality—and providing oppatuniti es to show equivalence of
representations that appea quite different. Representationis aunifying theme that
goesto the heat of computer science

Using programming in treaing the survey material allows aricher treament.
When representing numbers, students write programsto interpret binary strings as
twos-complement numerals. Instead of using a provided simulator for automata,
students write and then use their own simulator. Students st up their own
experimental comparisons of sorting algorithms by producing programs and
instrumenting them, then coll eding and analyzing the data.

The assgnment that students universally regard as the most challenging is the
implementation d a simulator for asimple macdine language [Bro97,Appendix CJ.
Writing this program helps the students appredate how much they take for granted
when working problems by hand, as oppcsed to fully spedfyingtheir thinkingto a

computer. Thisassgnment drives home theimportance of abstradion asit gives
students a mncrete example of its power.

This greaer depth daes mean that not as many topics can be surveyed; some aeas
must be left out. In spite of this, we think ou introduction gves our students avery
goodsense of what it isto do computer science, to think like a @omputer scientist. We
are quite happy to trade abit of breadth for the depth of experience gained.

One gaoal for restructuring the introductory courses was to open additional courses
to nonmajors, with the hope of offeringaminor in Applied Computing. Discrete
Math isnolonger onthe prerequisite path to many CS courses, particularly thosein
software development and in computing systems. The way is now clea to aminor
with areduced mathematics requirement, but we have not yet made progresstoward
that end.

5 COMPARISONWITH OTHER STRUCTURES

CC2001[ACMO1] describes svera structures for introductory sequences. We
had already foundthat the “programming first” structures (whether imperative or
objed-based) did na serve our program’s goals. There ae structures that manage to
integrate deeper concepts with introductory programming, as exemplified espedally
by [HKK99] or even [AS96], bu we believe that many of our students would be
overwhelmed bythe astrad thinking required if they encountered this material as
freshmen. Given ou student popuation, we neal to bring them to that level by amore
gentle path, and ou more gradual approach gves us a chanceto convincethem of the
value of abstradion.

Thelabel “breadth first” is often applied to structures that aim to gve students a
goodsense of the discipline ealy, emphasizing that computer scienceis not the same
as programming (or even software development). While we heatily agreg we must
point out that the label has been applied to rather different structures.

Oneinterpretation [TG91] combines the introductory programming with survey
material over two to four semesters. That isadually rather similar to ou old program.
For adiverse student popuation, it has the drawbads we encourtered with ou old
program.

Anather “breadth-first” approacd isto begin with a survey course, sometimes
labelled CS0, taken before (or independent of) the first course in programming. We
shoud nae that different kinds of courses have been cadled CS0. Some survey
courses are amed principaly at majors and so may aso introduce professonal issaues,
[C0097, for example, emphasizes problem-solving as a prerequisite to programming.
Others, such as[GBL94], are amed at a broader audience, doubling as aservice
course—and areauiting goundfor potential mgjors. The common element is that
these surveys do nd require aprogramming badkground.

This approach would na work well for ACU’s gudent popuation. The
mathematicad level of most entering ACU studentsis low;” teating a CS0 with
sufficiently low mathematicd demands to make it accessble would, we believe,
require watering davn ar eliminating some of the topicsthat are aucia in introducing

°* Andthe level of aversionto mathematica material is high.

the discipline to mgjors. A too-shall ow introduction daees not provide astrong
founddtion; it could, in fad, be worse than nosurvey at al, if it does not prepare
students for the rigor to come and leaves them with an inacarate impresson d the
discipline. One of the authors now routingly teades a no-programming-required
survey course in ancther coll ege; that course works at al only because the students
there have ahigh enoughlevel of mathematicd sophisticaion.

CC2001 biefly mentions what it describes as “breadth second':

Ancther approad to providing lreadth in the aurriculum isto dffer a survey of
thefield after the completion d the introductory programming sequence. This
“breadth-second’ approadh means that students begin with a programming-
based introduction to make sure they have the necessary implementation skill s
but then have an ealy chanceto appredate the range of topicsthat are dl part
of computer science ...

This comes closer to our model than anything else we have seen. Significantly,
though,we placethe survey material after just one semester of programming rather
than a sequence of two or more aurses. CC2001continues:

...While we fed that such an approad isworth pursuing as an experiment, we
have nat yet foundmodels that mee our criterion for acceptance

Our program can be viewed as sich an experiment. The initial results have been qute
good,thoughwith a small number of students.

CC1991 paceal “Introduction to a Programming Language” as an ogtional topic,
outside the are, assuming that “increasing numbers of students do gain such
experiencein secondary schod” [ACM91, p.18]. CC2001retreas from that position,
pladng “Programming Fundamentals’ within the core. We think that CC1991 fad it
basicdly right, bu that the high-schod experienceof our studentsistoo ureven to
provide asolid founcition. By repadkaging the amurses 9 that Intro to Programming
does correspondto what our students get in high schod, we have been able to push
that first taste of programming before the CS mgjor. Because dl of our students take
Fundamentals of CS, that course ensuresthat all have the foundation they need for
more advanced work.

We shoud nae aparall el between ou new structure and what is commonin
departments of mathematics. At one time, few high schodss off ered cdculus, and
many dd na even dffer aprecdculus course. Coll ege mathematics programs
therefore began with a pre-cdculus course or, more recently, the first semester of
cdculus. Astheleve of high-schod mathematics has risen for many students,
mathematics departments have raised the level at which the major begins. We have
placel the first programming course before the mgjor instead of asthe beginning d
the major.’

Similarly, few mathematicians would consider the sort of algebraic manipulation
that dominates pre-coll ege instruction as redly “doing mathematics’, bu leaning

® Our move is courter to the shift in CC2001 The differencein diredion may be acourted for by the
low expedation we have for high-schod programming instruction. CC1991may have expeded
something analogots to a semester of Calculus, while we have amed only for the Precdculus.

those skill sis an essential prerequisite to eventually dang interesting mathematics.
Wetake asimilar view of elementary programming skill: it i sessential, bu it isnot
very charaderistic of doing adua computer science

The prerequisite of programming might seem at odds with recent
recommendations regarding increasing the accashility of computer scienceto
underrepresented groups, espedally women. CMU, for one, has aggressvely
promoted the fad that its CS major requires no programming badgroundin order to
increase participation bywomen [Blu0l]. We have been very careful, however, to na
extend the requirements for students who require Intro to Programming; it fill san
eledive dot within the mgjor, and the murse off erings are aranged to comfortably
acommodate entering students who reed that introduction. One of the motivations
for our structure was to reduceintimidation by raving studentsin ead classat more
nealy the same level, and the new structure has achieved that.

6 CONCLUSIONS

We have described a structure for the introductory course sequencethat places the
introduction to computer science dter a one-semester introductionto programming,
with the content of that semester matching programming courses of students entering
from highschod. Two yeas of experiencewith this gructure has srown that it fits
our student popuation qutewell. Furthermore, using programming exercises while
surveying the discipline enables a much richer—and consequently more authentic—
treament of the material. The arangement of our sequence dso provides our students
with a gradual introduction to abstrad thinking that appeas well -suited to their neads.

REFERENCES

[ACM91] ACM/IEEECS Joint Curriculum Task Force Computing Curricula 1991.
Asciation for Computing Madinery, February 1991.

[ACMO1] ACM/IEEECS Joint Curriculum Task Force Computing Curricula 2001:
Computer Science. Association for Computing Madhinery, Decanber
2001.

[AS96] Harold Abelsonand Gerald Jay Sussman. Structure and Inter pretation of
Computer Programs. MIT Press seaondedition, 1996.

[BluOl] Lenore Blum. Transforming the ailture of computing at Carnegie Méellon.
Computing Research News, 135):2, 6, 9,November 2001.

[Bro97] J. GlennBrookshea. Computer Science: An Overview. Addison-Wesley,
fifth edition, 1997.

[Co097 CurtisR. Cook.CS0: Computer science orientation course. In Proceedings
of the Twenty-eighth SSGCSE Technical Symposium on Computer Science
Education, pages 87-91,February 1997.

[GBL94] Michad Goldweber, JohnBarr, and Chuck Leska. A new perspedive on
teading computer literagy. In Proceedings of the Twenty-fifth SGCSE
Technical Symposium on Computer Science Education, pages 131-135,
March 1994,

[HKK 99]

[HS97]

[TBBYS]

[TGO1]

[TKBO1]

Max Hail perin, Barbara Kaiser, and Karl Knight. Concrete Abstractions:
An Introduction to Computer Science Using Scheme. Brooks/Cole
Publi shing Company, 1999.

Geoffrey Holmes and Tony C. Smith. Adding some spiceto CS1 curricula.
In Proceedings of the Twenty-eighth SGCSE Technical Symposium on
Computer Science Education, pages 204—208 February 1997.

Allen B. Tucker, Keith Barker, Andrew P. Bernat, Robert Cupper,
Charles F. Kelemen, and Ruth Ungar. Developing the breadth-first
introductory curriculum: Results of athreeyea experiment. Computer
Science Education, 8(1):27-55,March 1998.

A. Tucker and D.A. Garnick. A breadth-first introductory curriculum in
computer science. Computer Science Education, 3:271-295, 1991.

Allen B. Tucker, Charles F. Kelemen, and Kim B. Bruce Our curriculum
has become math-pholic! In Proceedings of the Thirty-second SGCSE
Technical Symposium on Computer Science Education, pages 243—-247,
February 2001.

