
Introducing Computer Science After Programming
Cary G. Gray

Wheaton College
Wheaton, Illinois

Cary.G.Gray@wheaton.edu

Michael D. Frazier
Abilene Christian University

Abilene, Texas
Mike.Frazier@cs.acu.edu

ABSTRACT

We describe replacement of a more traditional (CS1/CS2) introductory
sequence with one that starts after a one-semester programming-only course.
The change simplifies placement for entering students (whether from other
colleges or directly from high school), and the new structure more effectively
communicates the nature of the science to beginning students. The new
sequence accommodates the entering students who lack a high level of
mathematical maturity, but without compromising the mathematical nature of
the major.

1 INTRODUCTION

The introductory computer science sequence at Abilene Christian University
(ACU) had evolved from the old programming-first model, adding survey material to
CS1 in an attempt to give students a real taste of computer science early. Others have
noted similar concerns [HKK99, TBB98] and proposed a variety of structures to meet
them, particularly following the suggestions in [ACM91]. One of the key questions
has been how to relate the introduction of computer science as a discipline to initial
instruction in programming.

ACU has fairly open admissions standards, and many would-be computer science
majors arrive possessing a low level of mathematical maturity, though many have
prior programming experience. Since the fall of 1999 we have been using a novel
course structure that places the introduction to programming before the first course in
the major. While this structure was developed to deal with a specific student
population, we have found that the resulting structure offers significant advantages
that make it more broadly useful.

We describe in Section 2 the background and analysis that led to our proposal.
The new sequence is described in detail in Section 3, and our experience with it is
evaluated. Section 5 compares this structure with others and highlights why a similar
arrangement may be appropriate even for very different student populations.

2 BACKGROUND AND ANALYSIS

ACU’s previous introductory sequence

ACU offers a CS major that is intended as a science major—we want our students
to learn to think like scientists. Discrete Math is required early in the program so that
we can cover material more deeply (and eff iciently) in appropriate major courses.

ACU’s intro sequence had evolved from the classic (imperative) “programming
first” model, in which the two semesters of the first year concentrated on
programming. We had previously found ourselves struggling with the “computer
science is programming” misperception, and so we had added to the first semester a
significant effort to survey computer science, as in, for example, [HS97]. The second
semester included the beginning material on analysis of algorithms, supported by a
Discrete Math corequisite.

Figure 1 shows the allocation of material among these two courses and the junior-
level Algorithms and Advanced Data Structures which was required of all CS majors.
The modules in the figure, with rough description in terms of CC2001 [ACM01]
knowledge units,1 are:

programming 1 introductory programming and problem solving, using
procedures/functions and static data structures (PF1, PF2, and about half of
PF3)

recursion first taste of recursive functions (most of PF4)
programming 2 continued development of programming skill , including dynamic

(pointer-based) data structures, with strong emphasis on abstraction and
modularity (remainder of PF3 and PF4, PL5, much of PL6)

survey a survey of major areas in computing and computer science; not
exhaustive, but with enough breadth to be representative (portions of AL2,
OS1, NC2, PL1, PL2, PL3, SP1, SP2, SP4–7, AR3; most or all of AR2, AL5,
IS1)

1 This work was done prior to publication of CC2001, so that our thinking more naturally maps onto
CC’91 [ACM91], but we hope this description is more useful.

CS1 CS2 Algorithms

programming 1

recursion

programming 2

survey

elem. algorithms

int. algorithms

adv. algorithms

Figure 1: Old course structure

elementary algorithms first work with analysis of algorithms, typically via
sorting and searching (most of AL1, about half of AL2 and AL3)

intermediate algorithms more advanced algorithms and their analysis; the
balance of the algorithmic material essential for every computer science major
(balance of AL1–3, AL6, part of IS2)

advanced algorithms additional algorithmic material suitable for elective
coursework (including AL8, AL10)

A significant number of students arrive at ACU with unrealistic expectations about
our major. We therefore put special emphasis in the first semester on setting
expectations for the major through a survey of computing broadly and computer
science in particular. We want students who are not interested in our offerings to
move quickly to a more appropriate major so that they can graduate in a timely
manner. Requiring discrete mathematics early in the course sequence also helps to set
realistic expectations.

ACU also offers a service course, Introduction to Scientific Computing, as a one-
semester introduction to programming and other issues for majors in the hard sciences.
This course has often been taught by faculty from another science department, for
whom Fortran is the preferred language. The programming material covered
corresponds to “programming 1” in our li st of modules; the course also addresses
other issues that arise in numerical calculations.

Student population

Most students enter ACU as freshmen, directly from high school; the university as
a whole receives very few students who have completed a two-year program at a
junior college. Many of our entering students have had some instruction in computer
programming: many have had a course in high school; others have completed a single
course at a junior college. While many of the high school courses quali fy for credit
through the Advanced Placement program, almost all of our students have taken the
Computer Science A exam rather than the more advanced Computer Science AB. As
a consequence, the students with previous computing have typically been exposed
only to programming, and typically to no more programming than we cover in the first
semester.

In addition, admission to ACU is fairly open, such that many students arrive with
limited mathematics background. A littl e over half require at least one semester of
mathematics before they can (or should) take Discrete Math,2 and a significant number
require additional remedial courses. The Discrete Math corequisite to CS2 is a
significant barrier for these students.

A number of students express interest in taking computing coursework—perhaps
as much as completing a minor—but are not interested in the computer science major.
We would like to serve these additional students, providing we can do so without
compromising offerings for our majors.

2 At ACU, the prerequisite to Discrete Math is Precalculus, though we recommend that students without
calculus credit complete a semester of calculus before taking Discrete Math.

Motivation for change

Experience in teaching these courses, advising entering students, and dealing with
transfer courses revealed several problems:

Placement from high school
Placement of entering students is a problem. Students come from high school
with widely varying programming backgrounds, but very few students have
significant exposure to the other material we cover in our introductory courses.
The single greatest challenge of the first semester is grasping the process of
creating a program, but a significant number of students in the class already
have mastered that challenge. This leads to two problems: boredom for the
more advanced students and intimidation for the less advanced.

Transfer articulation
Evaluation of transfer coursework was criti cal to determine whether the
transferred course included enough of the survey material from CS1 to be
considered equivalent; in most actual cases it did not. The catalog description
alone was often insuff icient to make the determination.

Internal articulation
Articulation is awkward for students who change majors to CS after taking
Intro to Scientific Computing. Like students with programming experience
from high school, they have mastered much of the programming content of our
first semester, but often do not have all of the non-programming background
required by our second semester.

Course focus
Each of the first two courses has two goals, but students have diff iculty
keeping both in mind. Many students in the first semester are so overwhelmed
by learning to program that they miss the significance of the survey material.
(This is further evidenced by students’ persistence in referring to CS1 by the
name of the programming language used.) Similarly, the programming
material in the second semester tends to crowd out in the students’ minds the
deeper material on analysis of algorithms.

Discrete Math as a barrier
Almost all advanced CS courses build on material from our second semester,
but the Discrete Math corequisite closes that course—and all subsequent
courses—to most ACU students.

3 THE NEW PROGRAM

We have addressed these problems by reallocating material from our first two
semesters—plus the junior-level Algorithms course—among three new courses:

Introduction to Computers and Programming
A beginner’s course in programming and problem solving, supplemented by
additional material on topics such as history and social issues to make it
valuable to a student who does not take additional CS.

Fundamentals of Computer Science
survey of computing disciplines; object-oriented design, abstract data types,
and fundamental data structures
prerequisite: Intro to Computers and Programming, or equivalent

Elementary Algorithms and Data Structures
analysis of algorithms and data structures
prerequisite: Fundamentals, Discrete Math

The allocation of material among these new courses is shown in Figure 2.

The core of Intro to Programming is rather unambitious, leaving out the
introduction to recursion (and even a taste of pointers) that was included in our old
CS1. The essential requirements are low enough that we seldom have to worry about
whether transfer work is adequate to substitute for it.3 The instructor has considerable
freedom in choosing material to flesh out this course; the primary concern in that
selection is serving those who will not go on to more advanced work.

Each of the problems noted in the previous section is addressed by this
restructuring:

Placement from high school
Students with adequate programming background can be placed directly into
Fundamentals, which does not require the survey material that few high
schools (and the junior colleges we see transfers from) teach. Students with
little or no programming background spend a semester in Intro to
Programming focused on that one issue.

Transfer articulation
Granting transfer credit for the new Intro to Programming is much less risky
than for the old CS1. Transfer students with a stronger first semester course
face a mix of new and familiar material in Fundamentals of CS.

Internal articulation
Intro to Scientific Computing, without change, now substitutes well for Intro to
Programming.

3 On the other hand, few of our students transfer out after just one semester of CS.

Intro to Programming Fundamentals of CS Elem. Algorithms

programming 1

recursion

programming 2

survey

elem. algorithms

int. algorithms

enrichment material

Figure 2: New course structure

Course focus
The first and third semesters each have a single focus, clearly reflected in their
titles. The two components of Fundamentals of CS are more nearly balanced
than in the old CS1.

Discrete Math as a barrier
Prerequisites for CS courses that had listed CS2 (and therefore implicitl y
Discrete Math) have been reevaluated to identify those that require only
Fundamentals; courses that required the old advanced Algorithms have
changed to require only the new Elementary Algorithms.

The main drawback of this structure is that it expands our introductory material
from two semesters to three for students who do not have previous programming
experience. For CS majors, the elimination of the advanced Algorithms course as both
a requirement and a prerequisite offsets the increase, so that the total number of
semesters in sequence remains the same. Also, because Fundamentals of CS is the key
prerequisite course, students can begin some more advanced work in the same
semester that they are taking Elementary Algorithms.

The new arrangement does still present an articulation problem for students who
enter ACU with more than a semester of college-level computing. Such students
might be either transfers from other colleges (especially those with a traditional
CS1/CS2) or freshmen from a very strong AP Computer Science AB course (with
good coverage of analysis of algorithms). We see few such students, however,
compared to the number who were poorly placed in our old course sequence.

With the new curriculum, both the CS major and minor begin with Fundamentals
of Computer Science. The Intro to Programming course does not appear as a
requirement in either program.4 We have come to view Intro to Programming as
analogous to Precalculus in a mathematics program: a large share of students are
getting this material in high school, but it is far from universal. We therefore provide
a leveling course before the major for those who need it.

The placement of Discrete Math in the prerequisite structure is significant. In
particular, Discrete Math no longer lies on the path to all advanced courses in the CS
program. This removes an accidental barrier that has kept math-averse students from
taking additional courses. We hope that this will allow us to offer a minor in Applied
Computing to serve those students’ interest in computing, without diluting the
experience that we (and others [TKB01]) believe is vital to a major in computer
science.

4 EXPERIENCE

The new curriculum has been in place for two years. Several of the expected
advantages show up in advising and administrative contexts:

• The catalog text—and especially the course titles—is more supportive of our
“computer science is not the same as programming” message. This message is

4 Intro to Programming does count toward the total required hours in CS, so that the total hours of CS
required has not increased. Students who begin in Fundamentals take an additional advanced course
instead. Previously, a petition to substitute more advanced work was required for those students whom
we placed out of CS1; the new structure has eliminated the need for those petitions.

further reinforced by the fact that Intro to Programming is not listed as a major
requirement.

• Placement into the correct introductory course has been greatly simpli fied.
Most students can be correctly placed after a brief interview. The first
programming activity in Fundamentals of CS helps to settle the few students
whose initial placement is incorrect (with the scheduling of Intro to
Programming and Fundamentals of CS arranged to facilit ate the move).

• Evaluation of transfer coursework has been much easier; the more diff icult
decision of when to consider transfer work as equivalent to Fundamentals is
rare.

 Benefits have also been apparent in the classroom:

• The twin problems of intimidation and boredom are noticeably decreased,
because students in each class are closer to the same level. The reduction in
need to explicitl y compensate for intimidation of students without prior
programming experience is especially noticeable.

• All three of the new courses seem much more coherent than our old CS1/CS2.

In addition, we are able to make much more use of Discrete Math as a prerequisite
to Elementary Algorithms than we were with it as a corequisite to CS2. That delay
also gives students a littl e more time to mature mathematically.

Fundamentals of CS remains a rather ambitious course, with its dual goals
reflected in the use of a pair of textbooks, one for survey material (such as [Bro97])
and the other for the programming material. Two aspects of our approach to this
course help it to cohere, even in the minds of students: the programming exercises are
chosen to work with the key ideas in the survey, and the entire course is structured
around the theme of representation.

The theme of representation encompasses more than the encoding of data. It
includes representation of programs, including the idea of levels of abstraction and
virtual machines. Analysis of the performance trade-offs of different data structures
demonstrates the significance of choice of representation. Different classes of
automata represent computational models, seeking a minimal representation that
achieves universality—and providing opportunities to show equivalence of
representations that appear quite different. Representation is a unifying theme that
goes to the heart of computer science.

Using programming in treating the survey material allows a richer treatment.
When representing numbers, students write programs to interpret binary strings as
twos-complement numerals. Instead of using a provided simulator for automata,
students write and then use their own simulator. Students set up their own
experimental comparisons of sorting algorithms by producing programs and
instrumenting them, then collecting and analyzing the data.

The assignment that students universally regard as the most challenging is the
implementation of a simulator for a simple machine language [Bro97, Appendix C].
Writing this program helps the students appreciate how much they take for granted
when working problems by hand, as opposed to fully specifying their thinking to a

computer. This assignment drives home the importance of abstraction as it gives
students a concrete example of its power.

This greater depth does mean that not as many topics can be surveyed; some areas
must be left out. In spite of this, we think our introduction gives our students a very
good sense of what it is to do computer science, to think like a computer scientist. We
are quite happy to trade a bit of breadth for the depth of experience gained.

One goal for restructuring the introductory courses was to open additional courses
to non-majors, with the hope of offering a minor in Applied Computing. Discrete
Math is no longer on the prerequisite path to many CS courses, particularly those in
software development and in computing systems. The way is now clear to a minor
with a reduced mathematics requirement, but we have not yet made progress toward
that end.

5 COMPARISON WITH OTHER STRUCTURES

CC2001 [ACM01] describes several structures for introductory sequences. We
had already found that the “programming first” structures (whether imperative or
object-based) did not serve our program’s goals. There are structures that manage to
integrate deeper concepts with introductory programming, as exempli fied especially
by [HKK99] or even [AS96], but we believe that many of our students would be
overwhelmed by the abstract thinking required if they encountered this material as
freshmen. Given our student population, we need to bring them to that level by a more
gentle path, and our more gradual approach gives us a chance to convince them of the
value of abstraction.

The label “breadth first” is often applied to structures that aim to give students a
good sense of the discipline early, emphasizing that computer science is not the same
as programming (or even software development). While we heartil y agree, we must
point out that the label has been applied to rather different structures.

One interpretation [TG91] combines the introductory programming with survey
material over two to four semesters. That is actually rather similar to our old program.
For a diverse student population, it has the drawbacks we encountered with our old
program.

Another “breadth-first” approach is to begin with a survey course, sometimes
labelled CS0, taken before (or independent of) the first course in programming. We
should note that different kinds of courses have been called CS0. Some survey
courses are aimed principally at majors and so may also introduce professional issues;
[Coo97], for example, emphasizes problem-solving as a prerequisite to programming.
Others, such as [GBL94], are aimed at a broader audience, doubling as a service
course—and a recruiting ground for potential majors. The common element is that
these surveys do not require a programming background.

This approach would not work well for ACU’s student population. The
mathematical level of most entering ACU students is low;5 teaching a CS0 with
suff iciently low mathematical demands to make it accessible would, we believe,
require watering down or eliminating some of the topics that are crucial in introducing

5 And the level of aversion to mathematical material is high.

the discipline to majors. A too-shallow introduction does not provide a strong
foundation; it could, in fact, be worse than no survey at all , if it does not prepare
students for the rigor to come and leaves them with an inaccurate impression of the
discipline. One of the authors now routinely teaches a no-programming-required
survey course in another college; that course works at all only because the students
there have a high enough level of mathematical sophistication.

CC2001 briefly mentions what it describes as “breadth second”:

Another approach to providing breadth in the curriculum is to offer a survey of
the field after the completion of the introductory programming sequence. This
“breadth-second” approach means that students begin with a programming-
based introduction to make sure they have the necessary implementation skill s
but then have an early chance to appreciate the range of topics that are all part
of computer science. ...

This comes closer to our model than anything else we have seen. Significantly,
though, we place the survey material after just one semester of programming rather
than a sequence of two or more courses. CC2001 continues:

...While we feel that such an approach is worth pursuing as an experiment, we
have not yet found models that meet our criterion for acceptance.

Our program can be viewed as such an experiment. The initial results have been quite
good, though with a small number of students.

CC1991 placed “ Introduction to a Programming Language” as an optional topic,
outside the core, assuming that “ increasing numbers of students do gain such
experience in secondary school” [ACM91, p. 18]. CC2001 retreats from that position,
placing “Programming Fundamentals” within the core. We think that CC1991 had it
basically right, but that the high-school experience of our students is too uneven to
provide a solid foundation. By repackaging the courses so that Intro to Programming
does correspond to what our students get in high school, we have been able to push
that first taste of programming before the CS major. Because all of our students take
Fundamentals of CS, that course ensures that all have the foundation they need for
more advanced work.

We should note a parallel between our new structure and what is common in
departments of mathematics. At one time, few high schools offered calculus, and
many did not even offer a precalculus course. College mathematics programs
therefore began with a pre-calculus course or, more recently, the first semester of
calculus. As the level of high-school mathematics has risen for many students,
mathematics departments have raised the level at which the major begins. We have
placed the first programming course before the major instead of as the beginning of
the major.6

Similarly, few mathematicians would consider the sort of algebraic manipulation
that dominates pre-college instruction as really “doing mathematics” , but learning

6 Our move is counter to the shift in CC2001. The difference in direction may be accounted for by the
low expectation we have for high-school programming instruction. CC1991 may have expected
something analogous to a semester of Calculus, while we have aimed only for the Precalculus.

those skill s is an essential prerequisite to eventually doing interesting mathematics.
We take a similar view of elementary programming skill: it i s essential, but it is not
very characteristic of doing actual computer science.

The prerequisite of programming might seem at odds with recent
recommendations regarding increasing the accessibilit y of computer science to
underrepresented groups, especially women. CMU, for one, has aggressively
promoted the fact that its CS major requires no programming background in order to
increase participation by women [Blu01]. We have been very careful, however, to not
extend the requirements for students who require Intro to Programming: it fill s an
elective slot within the major, and the course offerings are arranged to comfortably
accommodate entering students who need that introduction. One of the motivations
for our structure was to reduce intimidation by having students in each class at more
nearly the same level, and the new structure has achieved that.

6 CONCLUSIONS

We have described a structure for the introductory course sequence that places the
introduction to computer science after a one-semester introduction to programming,
with the content of that semester matching programming courses of students entering
from high school. Two years of experience with this structure has shown that it fits
our student population quite well . Furthermore, using programming exercises while
surveying the discipline enables a much richer—and consequently more authentic—
treatment of the material. The arrangement of our sequence also provides our students
with a gradual introduction to abstract thinking that appears well -suited to their needs.

REFERENCES

[ACM91] ACM/IEEE-CS Joint Curriculum Task Force. Computing Curricula 1991.
Association for Computing Machinery, February 1991.

[ACM01] ACM/IEEE-CS Joint Curriculum Task Force. Computing Curricula 2001:
Computer Science. Association for Computing Machinery, December
2001.

[AS96] Harold Abelson and Gerald Jay Sussman. Structure and Interpretation of
Computer Programs. MIT Press, second edition, 1996.

[Blu01] Lenore Blum. Transforming the culture of computing at Carnegie Mellon.
Computing Research News, 13(5):2, 6, 9, November 2001.

[Bro97] J. Glenn Brookshear. Computer Science: An Overview. Addison-Wesley,
fifth edition, 1997.

[Coo97] Curtis R. Cook. CS0: Computer science orientation course. In Proceedings
of the Twenty-eighth SIGCSE Technical Symposium on Computer Science
Education, pages 87–91, February 1997.

[GBL94] Michael Goldweber, John Barr, and Chuck Leska. A new perspective on
teaching computer literacy. In Proceedings of the Twenty-fifth SIGCSE
Technical Symposium on Computer Science Education, pages 131–135,
March 1994.

[HKK99] Max Hailperin, Barbara Kaiser, and Karl Knight. Concrete Abstractions:
An Introduction to Computer Science Using Scheme. Brooks/Cole
Publishing Company, 1999.

[HS97] Geoffrey Holmes and Tony C. Smith. Adding some spice to CS1 curricula.
In Proceedings of the Twenty-eighth SIGCSE Technical Symposium on
Computer Science Education, pages 204–208, February 1997.

[TBB98] Allen B. Tucker, Keith Barker, Andrew P. Bernat, Robert Cupper,
Charles F. Kelemen, and Ruth Ungar. Developing the breadth-first
introductory curriculum: Results of a three-year experiment. Computer
Science Education, 8(1):27–55, March 1998.

[TG91] A. Tucker and D.A. Garnick. A breadth-first introductory curriculum in
computer science. Computer Science Education, 3:271–295, 1991.

[TKB01] Allen B. Tucker, Charles F. Kelemen, and Kim B. Bruce. Our curriculum
has become math-phobic! In Proceedings of the Thirty-second SIGCSE
Technical Symposium on Computer Science Education, pages 243–247,
February 2001.

