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ABSTRACT

Over the last few years, there have been several
efforts to use logging to improve performance,
reliability, and recovery times of file systems. The
two major techniques are metadata logging, where
the log records metadata changes and is a
supplement to the on-disk file system, and log-
structured file systems, whose log is their only on-
disk representation. When the file system is mainly
or wholly accessed through the Network File System
(NFS) protocol, it adds new considerations to the
suitability of the logging technique. NFS requires
that all operations be updated to stable storage before
returning. As a result, file system implementations
that were effective for local access may perform
poorly on an NFS server. This paper analyzes the
issues regarding the use of logging on an NFS
server, and describes an implementation of a BSD
Fast File System (FFS) with metadata logging that
performs effectively for a dedicated NFS server.

1. Introduction

Recent years have seen improvements in CPU speeds
that have not been matched by comparable
improvements in disk access speeds. As a result,
disk I/O has become the new bottleneck in operating
system performance [Oust 90]. Traditional file
systems perform poorly when run on fast machines
with relatively slow disks. This has motivated the
development of new file systems that seek to reduce
the frequency and latency of disk access. One
important technique is to use logging, which holds
the promise of higher performance, greater
reliability, and quick crash recovery.

1 The work in this paper was performed at Digital Equipment
Corporation.

Transparent access to files on other machines is
a relatively new development. Consequently, most
file systems are designed primarily for local access.
When the same file system is used for exporting files
and directories over a network, many assumptions
inherent in its design are invalid, and the file system
may perform poorly. In particular, the Network File
System (NFS) protocol [Sand 85] requires the server
to commit any file system modification to stable
storage before returning the results of a request.
Consequently, an NFS file system must perform
many more disk writes, most of them synchronous,
than a file system used for local access.

Recent implementations of logging in file
systems require extensive changes both to the kernel
algorithms and to the on-disk structures.
Development costs are high, since not only the
kernel code, but also utilities such as newfs(8) and
dump(8) must be rewritten. To upgrade to the new
file system, the system administrator must back up
all partitions, boot the new kernel, reformat the
disks, and finally restore all files. Their performance
gains, even for local access, are not significant
compared with other optimizations such as file
system clustering [McVo 91]. Moreover, current
logging file systems are optimized for local access,
and their advantages are reduced for NFS use.

The Calaveras project [Rama94] was an
advanced development effort at Digital Equipment
Corporation. Its aim was to build a dedicated, high-
performance, multi-protocol file server using
commodity hardware and conforming to existing
software standards. Its first prototype was an NFS
server running on Intel platforms. While designing
the Calaveras file system, we wanted to gain the
advantages of logging, namely high reliability and
quick crash recovery, while retaining the on-disk
layout of the BSD Fast File System (FFS)
[McKu 84]. It was also critical to optimize the file



system for NFS-only access, which required
addressing some of the drawbacks of existing
logging implementations.

We describe here the implementation and
performance of the Calaveras file system, which uses
metadata logging to enhance a traditional FFS.

2. Background

The original UNIX file system [Thom 78] uses
simple disk layout and algorithms, but performs very
poorly. It uses small, fixed-size blocks that are
allocated randomly from the disk. FFS, introduced
in the 42BSD release, provides a major
improvement. FFS uses large block sizes (typically
4K or 8K bytes), and tries to optimize disk access by
intelligent placement of blocks. It divides the disk
into cylinder groups, comprising a set of contiguous
cylinders. Each cylinder group stores file data as
well as metadata (inodes, directories, and indirect
blocks), and the allocation algorithm tries to place
related information in the same cylinder group. It
also tries to minimize rotational delays by predicting
the amount of disk rotation between consecutive read
operations (the rotational delay, or rotdelay), and
separating successive blocks of the same file by that
amount.

There are several limitations to FFS
performance. The rotdelay factor optimizes for the
case when the file is accessed one block at a time.
At the same time, it limits the disk performance to a
fraction of raw disk access speed. For instance, if
the rotdelay for a disk is set to one (the best case),
two successive blocks of a file are separated by one
unrelated block. This limits the disk bandwidth to
half its raw capacity. Secondly, many file operations
require several different I/O operations, some of
which have to be done synchronously to preserve file
system consistency. For example, a file create
operation allocates and writes a new inode, and
modifies the parent directory and its inode. This
requires three disk accesses (more if the blocks are
not already in memory), each of them potentially
involving a head seek.

Further improvements have come in three major
directions. One is to modify file system algorithms
to reduce and optimize disk accesses, such as I/O
clustering [McVo 91] and write-gathering of NFS
operations [Jusz 94]. The second is to use non-
volatile read-only memory (NV-RAM) [Mora 90,
Hitz 94] to delay and batch writes that normally
must be synchronous. The third is to use logging as
either a supplement or a substitute for normal file
system writes.

The logging technique is particularly attractive
since its benefits are not restricted to performance. It
offers increased reliability, since the log may
replicate some or all of the file system data and
metadata. It also allows quick recovery after a
system crash, since a log playback is usually much
faster than the file system checking and patching
performed by fsck(8) [Kowa 78] in traditional
systems. This is an extremely important
consideration for installations that require high
availability and cannot tolerate long delays due to
crashes.

2.1. Logging file systems

A file system can use logging in two ways — it can be
log-structured, or log-enhanced. The former
approach represents the entire file system as a single,
continuous log [Finl 87, Oust 89]. It relies on a
large cache to handle most read requests, and tries to
write the log in large chunks, sequentially on the
disk. Operations are batched as far as possible to
avoid small writes. Whenever a block is modified, it
is simply rewritten to the tail of the log instead of
updating in place, and other data structures are
updated and similarly rewritten to reflect the new
position. In time, many blocks in the log become
invalid, either because they have been rewritten
further ahead in the log, or because the
corresponding files have been deleted. The file
system tracks and garbage collects these blocks,
freeing up space needed when the disk is full and the
log must wrap around. This requires compacting the
free space, rewriting scattered active blocks to the
head of the log.

[Selt 93] describes an implementation of a log-
structured file system (LFS) for 44BSD UNIX,
based on similar work for Sprite in [Rose 91]. While
LFS performs better than traditional FFS, its
performance gains are matched, and in some ways
bettered, by simpler enhancements to FFS such as
the file system clustering work of [McVo 91]. LFS
also involves a major code rewrite and on-disk
structures that are incompatible with FFS.
Moreover, the performance benefits of LFS come
directly from the ability to write the log in large
chunks. This is generally not possible with NFS,
which requires synchronous commits. Finally, the
garbage  collection and  compaction  costs
substantially reduce the performance; in some
benchmarks, the performance of LFS with garbage
collection was as much as 20% worse than standard
FFS.



In log-enhanced file systems, the log is a
supplement to, and replicates information in, the
normal on-disk structures [Hagm 87]. Typically, the
log only records changes to metadata objects (inodes,
directories, allocation maps, etc.), perhaps in an
ordinary file in the same file system. If the system is
shutdown gracefully, the log can be discarded, since
the file system is up to date and consistent. In the
event of a crash, however, the log is used to rebuild
the file system. During normal operation, each
metadata write is first written synchronously to the
log, and the on-disk structures are updated later
during cache flushes. Hence after a crash, the on-
disk structures may contain stale data, but the log
has a record of all completed operations, and can be
played back to recover the file system to a consistent
state.

Metadata logging may improve performance as
well. On one hand, each metadata update is written
to disk twice — once to the log, and once to its
normal location on disk (we call this write the in-
place update). On the other hand, since the in-place
updates are delayed, they are often eliminated or
batched. For example, the same inode may be
modified several times before it is flushed, and
multiple inodes in the same disk block are written
out together. The log writes are batched as well.
For a single operation such as create, the changes to
the directory and the two inodes can be combined in
a single log entry. Multiple operations that are
temporally close to each other can be similarly
batched. This reduces the total number of disk
writes for metadata blocks. The overall impact on
performance depends on the ratio of the metadata
operations (such as create, delete, and link) to data
writes. If much of the activity in a system is large
file writes, the performance improvement is
negligible.

2.2. Considerations for NFS access

The behavior and performance of a file system are
very different when it is accessed locally and when it
is accessed by remote clients using a file access
protocol such as NFS. NFS is a stateless protocol,
and neither the server nor the clients are required to
maintain state information about the other (although
both usually maintain some state for performance
reasons). When a server crashes and recovers, the
client has no way of knowing it, and the effect to the
client is similar to that of a network delay. For such
a protocol to work consistently, the server is required
to commit all file system modifications to stable
storage before returning the results of an operation.

This condition has a great impact on file system
behavior. For local file systems, the kernel delays
most disk writes until it needs to flush its cache.
This has many advantages. Multiple writes to the
same block between cache flushes are all committed
by a single disk write. The disk driver can
effectively reorder the writes to minimize head seeks.
Many writes can be eliminated altogether — if a user
creates a temporary file, writes some data into it, and
deletes it shortly thereafter, the data blocks may
never be written to disk.

NFS requests, on the other hand, require
frequent synchronous disk writes. Each write
request that increases the size of a file causes at least
two disk writes — one to write the data block, and
one to write the updated inode. Additional writes
are necessary if an indirect block must be created or
modified. NFS access thus generates a lot more disk
I/0 and offers less room for traditional optimizations
such as reordering of disk requests. Consequently, a
file system that is suitable for local access may
perform poorly if used mostly or wholly for NFS
access.

NFS server performance is characterized by two
metrics — latency and throughput. Latency measures
the average time taken for each NFS request, while
throughput is the maximum load the server can bear,
measured in NFS operations per second. The two
are interrelated; as the load on a server increases, so
does the average latency. There is also room in the
design for a tradeoff. A log-structured file system,
for instance, achieves high performance by batching
writes. This results in increased throughput. On the
other hand, since the write must be committed to
disk before replying to the NFS request, such
batching can result in unacceptably high latency.

High latency causes several problems. Users see
the system as slow and unresponsive. If a request
takes very long to complete, the client may time out
and retransmit the request. If the server cannot
detect or handle these retransmissions effectively, it
may perform a lot of duplicate processing. This
further escalates the performance degradation, and
also causes numerous correctness and consistency
problems [Jusz 89].

3. Calaveras file system design

We began by porting the UNIX file system (ufs)?
from DEC OSF/1 to the Calaveras kernel. This
required some changes since the storage interface,

2ufs refers to the implementation of FFS under the vnode/vfs
interface [Klei 86]



scheduling, and buffer cache of Calaveras [Rama 94]
were different from OSF/1. The on-disk structures
were identical to those of FFS. Once we had a
working prototype, we decided to enhance it by
adding metadata logging.

The primary motivation for logging was to
provide quick crash recovery. We wanted to
eliminate the need for fsck, which can take tens of
minutes on a file server with a large number of disks.
We also wanted equal or better performance — in
particular, it was essential that the addition of
logging not increase the latency of the server.

An important constraint was that the on-disk
layout of the file system remain unchanged, so that
users could migrate existing disks to the server
without needing to back up and restore the file
system. Finally, we wanted to restrict and isolate the
changes to the file system, and avoid a large
development effort or extensive code rewrite. These
considerations precluded a log-structured file system
approach.

An important decision was whether to use an
undo-redo or a redo-only log [Moha 92]. An undo-
redo log records, for each modified object, both its
old and new values. The advantage of this method is
that it has looser consistency requirements governing
the order of log writes and in-place updates
[Chut 92]. On the other hand, it doubles the size of
the log and of each write to it. The recovery
algorithm is also more complex, since logged
transactions can be either replayed or rolled back. A
redo-only log only records the new value of each
modified object. This imposes stricter ordering of
operations (described below), but has a simple
recovery algorithm and smaller log size. We decided
to adopt a redo-only log.

A related decision was to use physical block
addressing, as opposed to logical block addressing or
operations logging. Our log entries identify blocks
by their physical disk locations, rather than by their
logical names in the file system. This makes
recovery simple, since the log contains the
destination address of each item. For systems that
use a logically addressed log, it is generally incorrect
to replay the log from the beginning if the system
crashes during recovery. Hence the recovery process
must itself log its progress. This makes recovery
slow and complex. The same problem occurs with
systems that log operations rather than the new value
of the data.

Our basic approach is similar to that in the
Cedar file system [Hagm 87]. Instead of storing the

log in the same file system, however, we use a
separate partition (preferably, a separate disk) for the
log. This does not have to be a very large disk, since
a metadata-only log does not take up too much
space. Further, as we shall demonstrate, the log disk
can be relatively slow, yet not degrade overall
performance. This allows a system administrator to
dedicate a small, inexpensive disk for the log. There
is only one log in the system; it records changes to
objects in all the file systems.

FFS has five different types of metadata objects
- inodes, directories, allocation bitmaps, indirect
blocks, and cylinder group summaries. We log
modified inodes in their entirety. For directories, we
record the 512-byte chunk that contains the modified
data. In the case of allocation bitmaps, we only log
the changed bits. Cylinder group summaries can be
quickly computed from the allocation bitmaps, and
hence are not logged. Logging indirect blocks would
have required a substantial change to several
functions, and the benefits are small, since this is a
relatively infrequent operation. We decided to defer
it in the first implementation.

The logging code only affects those NFS
requests that can potentially modify the file system.
We call these requests (setattr, write, link, symlink,
create, remove, mkdir, rmdir, and rename) intrusive.
Each intrusive request generates a log entry, which
records all metadata changes made by that request.
The server must write that entry to the disk before
replying to the request. The in-place updates of the
metadata wait for the next sync operation, which
happens every 30 seconds in Calaveras.

When all metadata objects described by a log
entry are sync’ed to disk, the entry is obsolete and
can be overwritten. The log is circular, wrapping
around when it reaches the end. If the log is large
enough, the sync operations will keep it clean, and
no separate garbage collection is necessary. We
found that a 10-Mbyte log was sufficient for a server
with 12 disks, each with about 375 Mbytes of active
data, running at a load of 650 NFS operations per
second. We therefore mandated a minimum log size
of 32 Mbytes (way more than enough for the loads
our server could support), and restricted garbage
collection code to merely track the log usage, and to
panic if active data was overwritten.

The initial performance results were extremely
poor, due to the overhead of writing one log entry for
each intrusive NFS operation. We devised a solution
that allowed automatic batching of log entries
without increasing the latency. We also added
batching to the recovery algorithm. These
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Figure 1: Race condition in a redo-only log

enhancements, described in the following sections,
allowed us to meet our performance goals.

3.1. Log consistency

Crash recovery with a redo-only log is effected by
replaying the log, writing all objects back to their
correct locations on disk. This requires that the log
copies of the objects are more current than the on-
disk copies. Hence during normal operation, any
change to a metadata object must be committed to
the log before the in-place update of the object. The
file system satisfies this condition by not releasing

the buffers containing the metadata objects to the
cache until the log write completes.

There is, in fact, a much stronger requirement.
It is incorrect to for an intrusive request to even read
any object that has not been written out to the log.
Figure 1 illustrates a potential problem. Thread t1
modifies object A, and is about to write it out, first to
log and then to disk. Before it can do so, thread t2
reads object A, and based on that, modifies object B.
It then writes B to the log, and is about to write it to
the disk. If the system were to crash at this instant,
the log contains the new value of B, but the new
value of A is neither in the log nor on disk. Since
the change to B depends on the change to A, this
situation is potentially inconsistent.

To take a concrete example, suppose tl is
deleting a file from a directory, while t2 is creating a
file by the same name in the same directory. t1
deletes the file name from block A of the directory.
t2 finds that the directory does not have a file by that
name, and proceeds to make a directory entry in
block B of the directory. When the system recovers
from the crash, it has the old block A and the new
block B, both of which have a directory entry for the
same file name.

To ensure consistency, the server must lock all
metadata objects until their log entries are written
out. This lock only affects intrusive NFS operations.
It is perfectly valid to read uncommitted data if no
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Figure 2: Data structures to implement logging




modifications are made based on that. A separate
logging lock has been added to vnodes to implement
this synchronization. Only the intrusive requests
acquire this lock.

4. Implementation

Figure 2 describes the data structures used to
implement logging. There are five main objects:

* an update descriptor tracks all operations and
synchronization associated with a single NFS
request.

* a log entry contains the actual data that is
written to the log for one NFS request.

¢ the log use map tracks which parts of the log are
active and which are free.

* staging buffers allow automatic batching of log
writes.

* log holds prevent premature release of an update
descriptor.

4.1. The update descriptor

An update descriptor baby-sits an NFS request, and
holds all temporary information required to
successfully complete it. Each intrusive NFS request
first acquires an update descriptor, and passes it as
an additional argument to many of the functions it
calls. The descriptor is released not when the
request completes, but when all the metadata objects
that it has modified have been successfully updated
in-place. At that time, the log entry on disk for this
request becomes obsolete, and the corresponding bits
in the log use map are cleared. This is the last step
in processing an NFS request.

The fields of the update descriptor include

* a list of vnodes whose logging lock is held by
this request. When the log entry is committed
to disk, these locks are released.

* a reference count of the number of log holds
pointing to it. The descriptor is released when
this count drops to zero.

* base and size of the log entry. This determines
the bits to clear in the log use map when the
descriptor is released.

* a list of items to log. Each item is identified by
an item type (inode, directory chunk, inode
allocation bitmap, or block allocation bitmap),
pointer to the cached data, an inode number, the
address of the block on disk and the offset of the

object in that block.> This information is used
to create the log entry.

4.2. Log management

A log entry holds all the metadata changes for a
single NFS request. It comprises a header and a
table of contents, followed by the actual inodes,
directory chunks, etc. The entry is padded to a 512-
byte boundary. The table of contents describes the
type and disk location of each object in the entry.

The header contains the number of items in the
table of contents, as well as the total size of the
entry. It has two other fields — recno and curhead.
recno is a monotonically increasing record number,
such that recno modulo the size of the log (in 512-
byte sectors) equals the position of this entry in the
log. curhead is the recno of the first active record in
the log at the time the entry was generated. These
fields are used for recovery. The tail of the log is the
entry with the highest recno value. The curhead
field of that entry identifies the head of the log. The
recovery algorithm replays all entries between the
head and the tail.

The log use map is a bitmap with one bit for
each 512-byte sector of the log. When an entry is
active, the bits for the corresponding sectors are
checked. The bitmap allocates new entries to NFS
requests, and frees them when their update
descriptor is released. The map tracks the current
head and tail, and returns the information along with
each allocated entry. New entries must be allocated
at the tail, since the log must always be contiguous.
If the bits at the tail are busy (the tail wraps around
and catches up with the head), the log is considered
full, even if there are free regions in the middle.
This results in a panic.

A log hold is simply a reference to an update
descriptor. It contains pointers to chain the holds,
and a pointer to the descriptor. In Calaveras, the file
system maintains a dirty block list of modified
metadata blocks; this list is periodically traversed
and flushed by the sync daemon. The buffer headers
for these blocks contain a linked list of log holds.
Whenever an NFS request modifies a metadata
object, it adds a log hold to the corresponding buffer,
and increments the reference count of the update
descriptor that the hold points to.

When sync successfully writes the block to disk,
it traverses the list of log holds, releases each of

3For the allocation bitmaps, the item record contains the offset and
value of the modified bits in the map.



them, and decrements the reference counts on the
update descriptors. When the count reaches zero,
the descriptor and its log entry are freed.

4.3. Normal operation

When an nfsd thread receives an intrusive request, it
first allocates an update descriptor. It passes this
descriptor to each vnode operation and onward to
other functions that may need it. During the
processing of the request, the thread acquires
logging locks on the vnodes of any files or
directories it accesses. Whenever it modifies a
metadata object, it makes changes to the cached copy
of the object. It does not release the corresponding
buffer to the dirty block list, since it is not yet safe to
write it to disk. It adds an entry in the update
descriptor (in the list of items to log). This entry
identifies the buffer and acts as a reference to it.

When all the processing for the request is
complete, the thread calls the
processUpdateDescriptor() routine, which performs
the following tasks:

* Goes through the list of items to log, and
computes the size of the log entry.

* Reserves disk space for the entry from the log
use map.

* Reserves space in the staging buffer to write the
entry.

* Traverses the list again, copying each item
(inode, directory chunk, or allocation bits) to the
staging buffer.

¢ Calls writeLog() to write the entry to disk.
* Puts modified blocks on the dirty block list.

* Adds a log hold on each modified block, and
increments the reference count on the

descriptor.

* Releases all logging locks.

Multiple requests may modify a buffer between
flushes. Each removes it from the dirty block list
and replaces it after the log write completes. This
results in multiple holds on each block. A block
could also be modified more than once by a single
request, for instance, when a request modifies two
inodes in the same disk block. This causes multiple
holds on the same block referencing the same
descriptor.

Eventually, the sync daemon removes the block
from the list and flushes it to disk. It then releases
all holds for the block, and decrements the reference
counts on the corresponding descriptors. If the
reference count on a descriptor reaches zero, its log
entry is marked obsolete (by clearing the bits in the
log use map), and the descriptor is released as well.

5. Batching log writes

Writing each log entry to disk individually is
expensive, and causes overall degradation of server
performance. All logging systems rely on batching
of log writes to obtain decent throughput. At the
same time, the batching requires that some writes be
delayed till sufficient data has been collected for a
large write. Since NFS requests cannot be replied to
until the write completes, this causes an increase in
latency, which is usually unacceptable. For this
reason, many logging file systems are unsuitable for
an NFS server.

We devised a solution to this problem, to get
automatic batching without any increase in latency.
The basic principle is that under heavy load, the log
disk should always be busy. No write should be kept
waiting if the disk is idle; the batching is restricted
to entries that accumulate while another log write is
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in progress.

The staging buffers are used to create and
populate the log entry before writing it to disk, and
they also provide the mechanism for automatic
batching. We need a minimum of two staging
buffers, so that one is filled while the other is being
written to disk. Normally, we use three buffers,
linked on a circular list. The buffer size is large,
since it must hold all the data transferred in a single
log write. We use 64-Kbyte buffers, since that was
the size of a single disk track. In practice, we never
write more than 16 Kbytes at a time.

Figure 3 describes the organization of staging
buffers. Each buffer header contains pointers to the
next buffer, to the start and end of the data area, and
to the first free byte in the buffer (posn). It also
contains a queue of the threads that are blocked
waiting for the buffer to be written to disk. There
are two global pointers — curBuf points to the buffer
currently being populated, and ioBuf points to the
buffer currently being written to disk.

The processUpdateDescriptor() routine allocates
the space needed for the log entry from the buffer
pointed to by curBuf, starting at posn. If there is not
enough space between posn and end this entry,
the next buffer becomes curBuf, and the entry is
allocated from that. processUpdateDescriptor() then
copies the metadata into the entry, and calls
writeLog() to write the entry to disk.

writeLog() checks to see if another write is in
progress (ioBuf is non-NULL). If not, it sets ioBuf to
this buffer, advances curBuf to the next buffer, and
initiates a write for this buffer. This will write out
all log entries in this staging buffer. When the write
completes, it wakes up all threads blocked on this
buffer’s queue.

If another write is already in progress,
writeLog() adds the thread to the staging buffer’s
queue, and blocks till this buffer is written out. In
this way, each time a log write completes, all
pending writes are batched into a single /O
operation. The batching does not impose any
additional latency.

This technique has some interesting properties.
We define the average batching efficiency as

batching efficiency
= log entries written / num of write ops
= intrusive requests per second /

log writes per second

If the disk is constantly busy, the number of log disk
writes per second is bounded by the raw performance
characteristics of the disk, and is usually smaller due
to the processing delays between writes. The
efficiency then is the average number of intrusive
requests that arrive in the time taken for one log
write (including the associated processing plus idle
time).

Under light loads, the efficiency is close to one,
since there are few instances of multiple requests
arriving in the before a disk write completes. As the
incoming load increases, so does the batching
efficiency. On a heavily loaded system, we measured
efficiencies of up to 1.6. This translates to a 40%
reduction in the total number of log writes.

The remarkable property of this implementation
is that the speed of the log disk does not substantially
impact the performance of the system. If the disk is
slower, the number of log writes per second
decreases, resulting in greater batching efficiency.
Hence while a slow log disk may slightly increase
the latency of each operation, the overall throughput
is not impacted, and may in fact improve.

6. Log recovery

Recovering the log is conceptually straightforward —
the log must be played back from start to end,
writing back each metadata object in it to its in-place
location. The two main implementation problems
are how to find the start and end of the log, and how
to reduce the total I/O needed for the recovery.

The log is divided into 64-Kbyte segments,
whose only property is that log entries may not cross
segment boundaries. The log allocation routines
enforce this by padding the last entry of a segment to
the boundary. Thus the beginning of a segment
always coincides with the start of a new log entry.
The entry’s header contains its size, so the recovery
algorithm can sequentially traverse entries in a
segment.

The recno field in the entry is a monotonically
increasing record number (such that recno % log size
equals the position of the entry in the log). Hence
the tail of the log is the entry with the highest recno
value (the log may wrap around several times, but
recno continues to increase).

The recovery procedure first uses a binary
search of the segments (looking only at the first entry
of each segment) to find the segment containing the
highest recno (tail entry). It then reads the segment
into memory, and scans it linearly to locate the tail
entry. The curhead field in that entry identifies the
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head of the log. It then recovers the log one segment
at a time, starting at the head.

To recover a segment, it reads the whole
segment into memory, and scans all entries to
eliminate items obsoleted by later items in the same
segment. For instance, several filenames may have
been written to a directory chunk; the last instance of
the chunk in the segment contains all the changes (to
that point). It then sorts the remaining items based
on file system id and block number. Finally, it
copies the items back from the sorted list to the in-
place disk locations. This way, it can combine all
entries in a segment that modify the same block.

This algorithm yields substantial savings. For a
32-Mbyte log (512 64-Kbyte segments), the binary
search locates the head segment in 9 reads, as
opposed to 256 reads for a linear search). By
eliminating duplicate items, and sorting and
combining the rest, we reduce the number of writes
by about a factor of 8 to 10 in typical cases.

7. Performance

We made our measurements on a DECpc 560ST, a
60 MHz Pentium machine with 192 Mbytes of RAM,

>

216 —

2

(&)

s 1.4 —

(4]

(=]

£ 12—

e

(&)

T

@ o o o o o o o o
[Ye) o o o o o o [Xp)

~— N o < Lo (de] (de]
NFS ops/sec

Figure 5: Batching efficiency as a function of server

load

an EISA bus, a DEFEA FDDI controller, and two
Adaptec 1740 controllers. For the logging
benchmarks, we used 10 Digital RZ-26 disks for file
systems, and one more for the log. For the non-
logging tests, we used all 11 disks for the file
systems. We ran the Spec LADDIS benchmark
[Witt 93], using DEC Alpha systems running OSF/1
as clients. We added code to the server to track the
peak active log size and batching efficiency.

The primary motivation for logging was quick
crash recovery, and to measure that, we powered off
the system when running at peak load. At that time,
the file system had about 3 Gbytes of data over 10
(logging case) or 11 (no-logging case) disks. In
absence of logging, the file system was recovered by
fsck. In the best case, this took about 450 seconds.
Whenever fsck ran into a serious error, it had to be
run interactively; this took much longer.

By comparison, the log recovery took between 3
and 14 seconds for the entire file system, depending
on the size of the log at the time of the crash. This
gain is somewhat exaggerated due to the fact that on
our server, fsck recovers one disk at a time, while the
log recovers all disks simultaneously. Even
accounting for that, the log recovery would
outperform fsck by a large factor.

Figure 4 describes the results of the LADDIS
benchmark. The maximum throughput we could
achieve was about 650 NFS operations per second,
both with and without logging. Beyond that, the
CPU became a bottleneck. At that peak load, the
peak active log size was 10 Mbytes, and the batching
efficiency was 1.6 (40% reduction in log writes).

The NoBatch curve describes the results of the
logging implementation without batched writes.
Besides uniformly high latency, the throughput
peaks out at 400 NFS operations per second, since
the log disk becomes a bottleneck.

The NoLogging and Logging curves are not too
different. The average latency is a little higher with
logging at low loads, but lower at high loads. This
reflects the effect of the batching efficiency
increasing with load.  Figure 5 describes the
variation of batching efficiency with incoming load.

A close look at the LADDIS test suite explains
the similarity between the logging and no-logging
results. 80% of the LADDIS requests are non-
intrusive (lookup, getattr, read, readlink, and
readdir), which are completely unaffected by
logging. Another 16% are write and setattr requests,
which typically modify only one metadata object (the
inode), and are also relatively unaffected by logging



Test CD RD CF RF Total
No Logging 370 151 339 121 981
Logging 123 66 264 89 542
Gain 3.01 2.28 1.28 1.36 1.81
Table 1: Small file benchmark results. The numbers are the elapsed time in seconds

(an in-place write is replaced by a log write). Only
4% of the load consists of requests that affect
multiple metadata objects (create, remove, rename,
link, mkdir, and rmdir); these are the ones that
benefit most from logging.

To concentrate on these, we ran a “small file
benchmark”, in which we ran four types of tests on a
server with eight disks. The tests were:

e CD: create 16000 directories; each disk has 20
directories with 100 sub-directories each.

* RD: remove the above tree (thus, 16,000
rmdirs).

* CF: copy a 1-Kbyte file 16000 times (same
distribution as for the CD test).

e RF: remove the above files.

Table 1 shows the results of the benchmark.
Logging is faster by a factor of 1.28 to 3.01 in the
four tests. The actual improvement of server
performance is even better, since the tests take into
account client-side processing as well as other
requests such as lookup and getattr that are
necessary for these operations.

Table 2 shows measurements made on the server
of the average elapsed time (in milliseconds) for the
four metadata requests tested by the small file
benchmark. The improvements are substantial;
mkdir, in particular, is improved by more than a
factor of six.

It has been difficult to compare these results
with other NFS servers, for lack of clear criteria to
base comparisons on. While many researchers
[Hagm 87, Selt93] have published performance
measurements on log-structured or log-enhanced file
systems, they have concentrated on benchmarks that
deal with local access. Conversely, many others
[Hitz 94, Jusz 94] have published measurements of

NFS performance using LADDIS and other tests.
Some of these do not use logging at all, and the
others do not have any measurements that explicitly
isolate the effect of logging.

[Hitz 94] provides the closest point of reference.
Its FAServer runs on the Intel 486 platform, and
uses a log-structured file system in conjunction with
NV-RAM. The configuration, therefore, is not too
different from ours. Their published measurements,
for an eight-system cluster, extrapolate to about 400
NFS ops/sec per server, at an average latency of
under 15 miliseconds. We compare that to our
benchmark on the 1486, which peaks at 597 NFS
ops/sec. with a latency of 29 miliseconds. The low
latency of the FAServer is almost entirely due to
their use of NV-RAM, which allows them to
complete operations without waiting for disk 1/O.

8. Conclusion

The logging enhancements met all their goals.
There was a tremendous improvement in crash
recovery time. Under a heavy, mixed, load, logging
yielded a small gain in latency and equal throughput.
For small file and directory operations, the gains
were substantial (a factor of 150 to 6.30
improvement in server latency).

All this was achieved at a low cost. The entire
implementation and testing took about twelve man-
weeks. We wanted to keep code changes to a
minimum, to make it easy to integrate enhancements
to the baseline code. We were able to do that; the
logging enhancements modify the ufs code in five
regards:

1.The update descriptor is passed along as an
additional argument to a number of vnode
operations and ufs functions.

2.Intrusive operations acquire logging locks on

Operation mkdir rmdir create remove
No Logging 106.4 50.1 304 36.5
Logging 169 17.3 17.1 244
Gain 6.30 2.89 1.78 1.50
Table 2: Average turnaround times for metadata operations on server, in msec.




metadata objects they access.

3.The functions that modify the metadata objects
do not release the dirty buffers; instead, they add
entries to the update descriptor’s item list.

4.Intrusive requests allocate an update descriptor
at the beginning and call
processUpdateDescriptor() at the end.

5.The sync() routine releases log holds and update
descriptors.

Besides these changes, we had to write the
logging module. This consisted of the functions and
data structures that implement logging and recovery.
The module has limited interaction with the baseline
code, and is accessed through a narrow, well-
defined, interface.

We left the FFS on-disk structures unchanged.
This allows users to migrate existing disks to our
server without backing up and restoring all files.
The log needs to be kept on a separate disk, but that
can be a small, inexpensive disk. The automatic
batching technique gives greater savings under
heavy load, and ensures that the performance of the
log disk does not impact overall system throughput.

Some work remains to be done. We need to
extend logging to include indirect blocks. We need
to integrate performance improvements such as NFS
write gathering [Jusz 94] and file system clustering
[McVo 91] with our logging framework. We must
add a checksum to log entries to guard against a
crash leaving behind a partially written log entry.
We also need to provide a background fsck-like
function to recover from hard disk errors that corrupt
one or more sectors. Finally, we must evaluate the
suitability of the implementation for an NFS v3.0
server [Pawl 94]. The new version of the protocol,
with its inherent ability to batch writes, might
change the assumptions made in our design.
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