Bringing Undergraduate Research into the Mathematics Classroom

ACMS 2011, Westmont College, Stephen Lovett

June 2, 2011
The Problem

Levels of Undergraduate Research
Reasons for Undergraduate Research

The Problem

ACMS 2011, Westmont College, Stephen Lovett

Bringing Undergraduate Research into the Mathematics Classroom
Many graduate schools would like to see student research.
The Problem

- Many graduate schools would like to see student research. But REUs are very competitive.
The Problem

- Many graduate schools would like to see student research. But REUs are very competitive.
- During interviews, employers ask about accomplishments.
The Problem

- Many graduate schools would like to see student research. But REUs are very competitive.
- During interviews, employers ask about accomplishments. Problem sets do not count toward accomplishments.
The Problem

- Many graduate schools would like to see student research. But REUs are very competitive.
- During interviews, employers ask about accomplishments. Problem sets do not count toward accomplishments.
- In other disciplines, students learn to write/perform in their field.
The Problem

Many graduate schools would like to see student research. But REUs are very competitive.

During interviews, employers ask about accomplishments. Problem sets do not count toward accomplishments.

In other disciplines, students learn to write/perform in their field. In math, that is usually reserved for honors requirements.
Many graduate schools would like to see student research. But REUs are very competitive.

During interviews, employers ask about accomplishments. Problem sets do not count toward accomplishments.

In other disciplines, students learn to write/perform in their field. In math, that is usually reserved for honors requirements.

Can we adjust teaching practices in math classes to fix these problems?
Levels of Undergraduate Research
Levels of Undergraduate Research

1. Publishable results.
Levels of Undergraduate Research

1. Publishable results.

2. Results that extend/generalize a theorem in the literature, but probably not publishable.
Levels of Undergraduate Research

1. Publishable results.

2. Results that extend/generalize a theorem in the literature, but probably not publishable.

3. Results obtained during some investigation, new to the student but not to the math community.
Levels of Undergraduate Research

1. Publishable results.
2. Results that extend/generalize a theorem in the literature, but probably not publishable.
3. Results obtained during some investigation, new to the student but not to the math community.
4. Results well established in the literature. The student reads and understands, but does not discover.
Levels of Undergraduate Research

1. Publishable results.

2. Results that extend/generalize a theorem in the literature, but probably not publishable.

3. Results obtained during some investigation, new to the student but not to the math community.

4. Results well established in the literature. The student reads and understand, but does not discover.

5. Results obtained in a group project or a team competition.
Levels of Undergraduate Research

1. Publishable results.
2. Results that extend/generalize a theorem in the literature, but probably not publishable.
3. Results obtained during some investigation, new to the student but not to the math community.
4. Results well established in the literature. The student reads and understand, but does not discover.
5. Results obtained in a group project or a team competition.
6. Problem solving.
Reasons for Undergraduate Research
Reasons for Undergraduate Research

1. offers a good introduction to our profession.
Reasons for Undergraduate Research

1. offers a good introduction to our profession.

2. teaches communication.
Reasons for Undergraduate Research

1. offers a good introduction to our profession.
2. teaches communication.
3. connects various areas of mathematics.
Reasons for Undergraduate Research

1. offers a good introduction to our profession.
2. teaches communication.
3. connects various areas of mathematics.
4. looks good on resumes.
Reasons for Undergraduate Research

1. offers a good introduction to our profession.
2. teaches communication.
3. connects various areas of mathematics.
4. looks good on resumes.
5. (For a college) sounds good as a recruiting tool.
Reasons for Undergraduate Research

1. offers a good introduction to our profession.
2. teaches communication.
3. connects various areas of mathematics.
4. looks good on resumes.
5. (For a college) sounds good as a recruiting tool.
6. (For a college) creates a selling point for hiring faculty or getting grants.
Reasons for Undergraduate Research

1. offers a good introduction to our profession.
2. teaches communication.
3. connects various areas of mathematics.
4. looks good on resumes.
5. (For a college) sounds good as a recruiting tool.
6. (For a college) creates a selling point for hiring faculty or getting grants.

Maybe we cannot solve all of these in the classroom setting but why not try.
Investigative Projects

A new form of assignment with these parameters:
Investigative Projects

A new form of assignment with these parameters:

- Two to three projects per semester.
Investigative Projects

A new form of assignment with these parameters:

- Two to three projects per semester.
- Teams of 2 to 3, not more, not less.
Investigative Projects

A new form of assignment with these parameters:

- Two to three projects per semester.
- Teams of 2 to 3, not more, not less.
- Give at least two weeks.
A new form of assignment with these parameters:

- Two to three projects per semester.
- Teams of 2 to 3, not more, not less.
- Give at least two weeks.
- Counts for a sizeable portion of the course grade.
Investigative Projects

A new form of assignment with these parameters:

- Two to three projects per semester.
- Teams of 2 to 3, not more, not less.
- Give at least two weeks.
- Counts for a sizeable portion of the course grade.
- Offer a variety of topics; students are encouraged to modify or add questions.
I grade according to 4 Cs:
I grade according to 4 Cs:

- Clarity (Style)
I grade according to 4 Cs:
- Clarity (Style)
- Correctness (Mathematical accuracy)
I grade according to 4 Cs:

- Clarity (Style)
- Correctness (Mathematical accuracy)
- Completeness (Scope of the project)
I grade according to 4 Cs:

- Clarity (Style)
- Correctness (Mathematical accuracy)
- Completeness (Scope of the project)
- Creativity (Adding their own work, inventiveness)
Assessing Student Projects

I grade according to 4 Cs:
- Clarity (Style)
- Correctness (Mathematical accuracy)
- Completeness (Scope of the project)
- Creativity (Adding their own work, inventiveness)

I give detailed feedback in each of those categories.
I grade according to 4 Cs:
- Clarity (Style)
- Correctness (Mathematical accuracy)
- Completeness (Scope of the project)
- Creativity (Adding their own work, inventiveness)

I give detailed feedback in each of those categories.

Sometimes I offer a rewrite.
Guidelines for Project Questions

Some guiding principles for project questions:
Some guiding principles for project questions:

- Never a direct application of course content.
Guidelines for Project Questions

Some guiding principles for project questions:

- Never a direct application of course content.
- Always have some form of open-ended aspect (some more; some less).
Some guiding principles for project questions:

- Never a direct application of course content.
- Always have some form of open-ended aspect (some more; some less).
- May be guided, like some textbook projects.
Guidelines for Project Questions

Some guiding principles for project questions:

- Never a direct application of course content.
- Always have some form of open-ended aspect (some more; some less).
- May be guided, like some textbook projects.
- Some projects may not have clear cut solutions.
Specific Project Questions

1. Calculus II: Project 1; Project 2; Project 3; Project 4
2. Linear Algebra: Project 1; Project 2
3. Differential Equations: Project 1
4. Modern Algebra: Project 1; Project 2
Specific Student Work

- Differential Equations: Population Dynamics and War
- Modern Algebra:
 When Does $x^2 + 1 \equiv 0 \pmod{n}$ Have Roots?
- Modern Algebra: The Ring $P(S)[x]$
- Modern Algebra: The Ring $P(S)[[x]]$
- Linear Algebra: Dating Habits of Wheaties
- Calculus 2: Parametric Curves and Art
- (Mentored Student Research)
Specific Student Work

- Differential Equations: Population Dynamics and War
- Modern Algebra:
 - When Does $x^2 + 1 \equiv 0 \pmod{n}$ Have Roots?
- Modern Algebra: The Ring $P(S)[x]$
- Modern Algebra: The Ring $P(S)[[x]]$
- Linear Algebra: Dating Habits of Wheaties
- Calculus 2: Parametric Curves and Art
- (Mentored Student Research)

New theorems proved, (At least) one article published, some interesting results...
What Students Have Learned

Students can learn different things at different levels.
Students can learn different things at different levels.

- That math problems are not just exercises.
What Students Have Learned

Students can learn different things at different levels.

1. That math problems are not just exercises.

2. How to write a math paper: prose, organization, LaTeX,...
What Students Have Learned

Students can learn different things at different levels.

1. That math problems are not just exercises.
2. How to write a math paper: prose, organization, LaTeX, ...
3. How to think creatively and reflectively using math.
What Students Have Learned

Students can learn different things at different levels.

1. That math problems are not just exercises.
2. How to write a math paper: prose, organization, LaTeX,…
3. How to think creatively and reflectively using math.
4. How to find real data.
What Students Have Learned

Students can learn different things at different levels.

1. That math problems are not just exercises.

2. How to write a math paper: prose, organization, LaTeX, ...

3. How to think creatively and reflectively using math.

4. How to find real data.

5. How to find what other people have already done.
A Few Additional Benefits
Students sometimes continue working on their project afterwards.
Students sometimes continue working on their project afterwards.

Projects produce many ongoing math conversations.
A Few Additional Benefits

1. Students sometimes continue working on their project afterwards.

2. Projects produce many ongoing math conversations.

3. I get rich material for when I write letters of recommendation.
A Few Additional Benefits

1. Students sometimes continue working on their project afterwards.

2. Projects produce many ongoing math conversations.

3. I get rich material for when I write letters of recommendation.

4. The projects begin to offer students a research experience.
A Few Additional Benefits

1. Students sometimes continue working on their project afterwards.
2. Projects produce many ongoing math conversations.
3. I get rich material for when I write letters of recommendation.
4. The projects begin to offer students a research experience.
5. It’s exciting!