Chapter 5 roadmap:

- Introduction to relations (Wednesday)
- Properties of relations (Monday and Wednesday)
- Closures (Today)
- Partial order relations (next week Monday)
- (Begin functions next week Wednesday)

Today:

- Review of relation properties
- An arithmetic on relations
- Computing whether a function is transitive
- ► Transitive closure
- Other closures

A relation from one set to another	R	set of pairs	subset of $X \times Y$ $R \subseteq X \times Y$	isEnrolledIn, isTaughtBy
A relation on a set	R	set of pairs	subset of $X \times X$ $R \subseteq X \times X$	eats, divides
The image of an element under a relation	$\mathcal{I}_R(a)$	set	set of things that a is related to $\mathcal{I}_R(a) = \{b \in Y \mid (a, b) \in R\}$	classes Bob is enrolled in, numbers that 4 divides
The image of a set under a relation	$\mathcal{I}_R(A)$	set	set of things that things in A are related to $\mathcal{I}_R(A) = \{b \in Y \mid \exists \ a \in A \mid (a,b) \in R\}$	classes Bob, Larry, or Alice are taking, numbers that 2, 3, or 5 divide
The inverse of a relation	R^{-1}	relation	the arrows/pairs of R reversed $R^{-1} = \{(b, a) \in Y \times X \mid (a, b) \in R\}$	hasOnRoster, teaches, isEatenBy, isDivisibleBy
The composition of two relations	S∘R	relation	two hops combined to one hop (Assume $S \subseteq Y \times Z$) $S \circ R = \{(a, c) \in X \times Z \mid \exists \ b \in Y \mid (a, b) \in R \land (b, c) \in S\}$	hasAsProfessor, eatsSomethingThatEats
The identity relation on a set	i _X	relation	everything is related only to itself $i_X = \{(x, x) \mid x \in X\}$	=

	Reflexivity	Symmetry	Transitivity
Informal	Everything is related to itself	All pairs are mutual	Anything reachable by two hops is reachable by one hop
Formal	$\forall x \in X, (x,x) \in R$	$\forall x, y \in X, (x, y) \in R \rightarrow (y, x) \in R$ OR $\forall (x, y) \in R, (y, x) \in R$	$\forall x, y, z \in X,$ $(x, y), (y, z) \in R \rightarrow (x, z) \in R$ OR $\forall (x, y), (y, z) \in R, (x, z) \in R$
Visual			
Examples	$C < c > = i$ is Δ quainted With	= isOppositeOf	< < > > C isTallerThan

 \equiv , isOppositeOf, isOnSameRiver, isAquaintedWith

<, \le , >, \ge , \subseteq , isTallerThan, isAncestorOf, isWestOf

The identity relation	on is a			
Reflexivity is a		noun that	_	
	noun			phrase
Composition is an		on		
	noun		plural noun	
Transitivity is a		that		
	noun			phrase

$$x + y$$
 $-x$

$$p \lor q$$
 $\sim p$

$$\frac{A \cup B}{A}$$

Distribution
$$x \cdot (y + z)$$

$$= x \cdot y + x \cdot z$$

$$p \wedge (q \vee r)$$

$$\equiv (p \wedge q) \vee (p \wedge r)$$

$$A \cap (B \cup C)$$

$$= (A \cap B) \cup (A \cap C)$$

Identity
$$x + 0 = x$$

 $x \cdot 1 = x$

$$p \land T \equiv p$$
$$p \lor F \equiv p$$

$$A \cup \emptyset = A$$
$$A \cap \mathcal{U} = A$$

$$S \circ R$$

$$R^{-1}$$

$$i_X \circ R = R$$

$$R^2 = R \circ R$$

R	is one less than	eats	is parent of
R^2	is two less than	eats something that eats	is grandparent of
R^3	is three less than	eats something that eats something that eats	is great grandparent of
???	<	gets nutrients from	is ancestor of

Domain
Rivers

First relation
Rivers

Second relation
is tributary to
The Platte flows into the Missouri, and the Missouri flows into the Missouri; both the Platte and the Mississippi.

Mississippi

Mississippi

People is parent of is ancestor of
Bill is Jane's parent; Jane is Bill is Jane's ancestor; Leroy has Leroy's parent both Jane and Bill as ancestors.

First relation Domain Animals eats

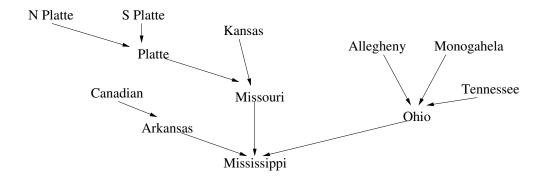
Rabbit eats clover; coyote eats rabbit.

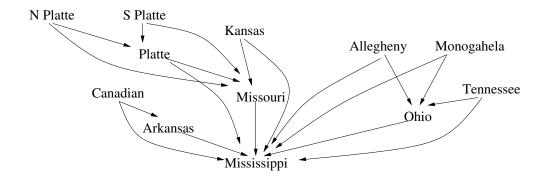
Second relation

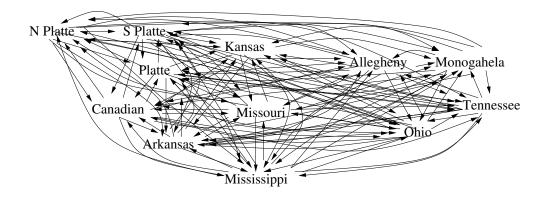
derives nutrients from Coyote derives nutrients from rabbit: rabbit derives nutrients from clover; both coyote and rabbit ultimately derive nutrients from clover.

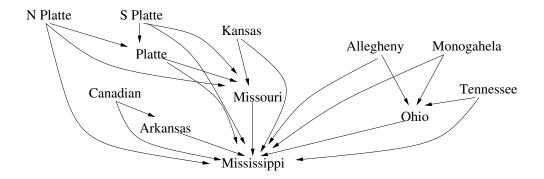
is one less than

2 is one less than 3; 3 is one less 2 < 3: 3 < 4: 2 < 4. than 4









If R is a relation on X, then R^T is the **transitive closure** of R if

- \triangleright R^T is transitive
- $ightharpoonup R \subseteq R^T$
- ▶ If S is a transitive relation such that $R \subseteq S$, then $R^T \subseteq S$

Which of the following expresses a transitive closure?

- My friends are my friends, an no one else.
- ▶ Any friend of my friend is also my friend.
- ▶ Any friend of my friends' friends is also my friend.
- ▶ My friends are my friends, and so are my friends's friends, and so are my friends' friends' friends, ans so on forever.

Let R be a relation and let T be the transitive closure of R. What, then, do you know to be true? Select all that apply.

- ▶ *R* is transitive
- ▶ *T* is a proposition
- ▶ T is a relation
- ▶ T is transitive
- ► *T* is a powerset
- ▶ R ⊆ T
- $ightharpoonup T \subseteq R$

Theorem 5.13 If R is a relation on a set A, then

$$R^{\infty} = \bigcup_{i=1}^{\infty} R^i = \{(x,y) \mid \exists i \in \mathbb{N} \text{ such that } (x,y) \in R^i\}$$

is the transitive closure of R.

Proof. Suppose R is a relation on a set A.

Suppose $a,b,c\in A$, $(a,b),(b,c)\in R^\infty$. By the definition of R^∞ , there exist $i,j\in \mathbb{N}$ such that $(a,b)\in R^i$ and $(b,c)\in R^j$. By the definition of relation composition and Exercise 5.7.4, $(a,c)\in R^j\circ R^i=R^{i+j}$. $R^{i+j}\subseteq R^\infty$ by the definition of R^∞ . By the definition of subset, $(a,c)\in R^\infty$. Hence, R^∞ is transitive by definition.

Suppose $a, b \in A$ and $(a, b) \in R$. By the definition of R^{∞} (taking i = 1), $(a, b) \in R^{\infty}$, and so $R \subseteq R^{\infty}$, by definition of subset.

Suppose S is a transitive relation on A and $R \subseteq S$. Further suppose $(a,b) \in R^{\infty}$. Then, by definition of R^{∞} , there exists $i \in \mathbb{N}$ such that $(a,b) \in R^i$. By Lemma 5.14, $(a,b) \in S$. Hence $R^{\infty} \subseteq S$ by definition of subset.

Therefore, R^{∞} is the transitive closure of R. \square

Other closures:

Ex 5.4.9 $R \cup i_A$ is the reflexive closure of R

Ex 5.4.10 $R \cup R^{-1}$ is the symmetric closure of R. (HW)

Ex 5.4.9 $R \cup i_A$ is the reflexive closure of R

Proof. Suppose R is a relation on A.

 $[R \cup i_A \text{ is reflexive:}]$ Suppose $a \in A$. $(a, a) \in i_A$ by definition of identity relation. $(a, a) \in R \cup i_A$ by definition of union. Hence $R \cup i_A$ is reflexive by definition.

 $[R \subseteq R \cup i_A:]$ Suppose $(a,b) \in R$. Then $(a,b) \in R \cup i_A$ by definition of uniion. Hence $R \subseteq R \cup i_A$. (Alternately, we could have cited Exercise 4.2.1.)

 $[R \cup i_A \text{ is the smallest such relation:}]$ Suppose S is a reflexive relation such that $R \subseteq S$. Suppose further $(a,b) \in R \cup i_A$. By definition of union, $(a,b) \in R$ or $(a,b) \in i_A$.

Case 1: Suppose $(a, b) \in R$. Then $(a, b) \in S$ by definition of subset (since we supposed $R \subseteq S$).

Case 2: Suppose $(a, b) \in i_A$. Then, by definition of identity relation, a = b. $(a, a) \in S$ by definition of reflexive (since we suppose S is reflexive). $(a, b) \in S$ by substitution.

Either way, $(a, b) \in S$ and hence $R \cup i_A \subseteq S$ by definition of subset. Therefore, $R \cup i_A$ is the reflexive closure of R. \square

For next time:

Do Exercises 5.4.(1, 2, 3, 4, 5, 9, 10)

Read 5.5

Take quiz