Chapter 4 roadmap:

- Subset proofs (Monday)
- Set equality and emptiness proofs (Today)
- Conditional and biconditional proofs (Friday)
- Proofs about powersets (new week Monday)
- (Test 2, Friday, Oct 18)

Today:

- Proofs that sets are equal
- Proofs that a set is empty

General forms:

- 1. Facts (p) Set forms
 - 1. Subset $X \subseteq Y$
 - 2. Set equality X = Y
 - 3. Set emptiness $X = \emptyset$
- 2. Conditionals $(p \rightarrow q)$
- 3. Biconditionals $(p \leftrightarrow q)$

(日) (四) (里) (里)

臣

 $A \times (B - C) \subseteq (A \times B) - (A \times C).$

Proof (long version). Suppose $x \in A \times (B - C)$. By definition of Cartesian product, x = (a, d) for some $a \in A$ and $d \in B - C$. By definition of difference, $d \in B$ and $d \notin C$.

By definition of Cartesian product, $(a, d) \in A \times B$. Also by definition of Cartesian product, this time used negatively, $(a, d) \notin A \times C$.

[That is, we rewrite $d \notin C$. as $\sim (d \in C)$. By generalization, $\sim (d \in C \land a \in A)$. By definition of Cartesian product, $\sim ((a, d) \in A \times C)$. This can be rewritten as $(a, d) \notin A \times C$.]

By definition of difference, $(a, d) \in (A \times B) - (A \times C)$. By substitution, $x \in (A \times B) - (A \times C)$. Therefore, by definition of subset, $A \times (B - C) \subseteq (A \times B) - (A \times C)$. \Box

▲ロト ▲圖ト ▲画ト ▲画ト 三回 - のへで

 $A \times (B - C) \subseteq (A \times B) - (A \times C).$

Proof (short version). Suppose $(a, d) \in A \times (B - C)$. By definition of Cartesian product, $a \in A$ and $d \in B - C$.

By definition of difference, $d \in B$ and $d \notin C$. By definition of Cartesian product, $(a, d) \in A \times B$ and $(a, d) \notin A \times C$.

By definition of difference, $(a, d) \in (A \times B) - (A \times C)$. Therefore, by definition of subset, $A \times (B - C) \subseteq (A \times B) - (A \times C)$. \Box

▲ロト ▲圖ト ▲画ト ▲画ト 三回 - のへで

For next time:

Pg 160: 4.2.(3, 14, 15, 18) Pg 161: 4.3.(5 & 6)

See assignment on Canvas for hint on Ex 4.2.15.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のへで

```
Read 4.(4 & 5)
Take quiz
```