
Chapter 7 outline:

▶ Recursively-defined sets (last week Monday)

▶ Structural induction (Monday)

▶ Mathematical induction (Today)

▶ Non-recursive programs—loops (Friday)

▶ Loop invariant proofs (next week Monday)

▶ A language processor The Huffman encoding (next week Wednesday)

Last time we saw self-referential proofs for propositions quantified over recursively
defined sets, structural induction.

Today we see self-referential proofs for propositions quantified over the natural
numbers and whole numbers.

▶ Opening examples and observations

▶ General form of mathematical induction

▶ Comments on the term induction

▶ Other examples, including on sets
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Conjecture:

∀ n ∈ N,
n∑

i=1

(2i − 1) = n2

5∑
i=1

(2i−1) = (2 ·1−1)+(2 ·2−1)+(2 ·3−1)+(2 ·4−1)+(2 ·5−1) = 1+3+5+7+9

Recall the Peano definition of W. Similarly for N: n ∈ N if n = 1 or n = x + 1 for
some x ∈ N.



∀ n ∈ N,
n∑

i=1

(2i − 1) = n2

Proof. Suppose n ∈ N. Then either n = 1 or there exists n ∈ N such that
n = x + 1.
Base case. Suppose n = 1. Then

n∑
i=1

(2i − 1) = 2− 1 = 1 = 12

Inductive case. Suppose n = x +1 such that x ∈ N and
∑x

i=1(2i − 1) = x2.
Then

∑n
i=1(2i − 1) = 2n − 1 +

∑n−1
i=1 (2i − 1) by definition of summation

= 2n − 1 +
∑x

i=1(2i − 1) by substitution
= 2n − 1 + x2 by the inductive hypothesis
= 2n − 1 + (n − 1)2 by substitution
= 2n − 1 + n2 − 2n + 1 by algebra (FOIL)
= n2 by algebra (cancellation)



∀ n ∈ N,
n∑

i=1

(2i − 1) = n2

Proof. Suppose n ∈ N. Then either n = 1 or there exists n ∈ N such that
n = x + 1.
Base case. Suppose n = 1. Then

n∑
i=1

(2i − 1) = 2− 1 = 1 = 12

Inductive case. Suppose n = x +1 such that x ∈ N and
∑x

i=1(2i − 1) = x2.
Then

∑n
i=1(2i − 1) = 2n − 1 +

∑n−1
i=1 (2i − 1) by definition of summation

= 2n − 1 +
∑x

i=1(2i − 1) by substitution
= 2n − 1 + x2 by the inductive hypothesis
= 2n − 1 + (n − 1)2 by substitution
= 2n − 1 + n2 − 2n + 1 by algebra (FOIL)
= n2 by algebra (cancellation) □



4|0 0 + 1 = 1 = 50

4|4 4 + 1 = 5 = 51

4|24 24 + 1 = 25 = 52

4|124 124 + 1 = 125 = 53

4|624 624 + 1 = 625 = 54

Conjecture: ∀ n ∈ W, 4|5n − 1



∀ n ∈ W, 4|5n − 1

Proof. By induction on n.

Base case. Suppose n = 0. Then 50 − 1 = 1− 1 = 0 = 4 · 0. Hence 4|50 − 1
by the definition of divides.

Inductive case. Suppose n > 0 and 4|5n−1 − 1.
Then, by definition of divides, there exists k ∈ W such that 5n−1 − 1 = 4k.
Moreover,

5n − 1 = 5 · 5n−1 − 1 by algebra, unless otherwise noted. . .
= 5 · (5n−1 − 1 + 1)− 1
= 5(4k + 1)− 1 by the inductive hypothesis
= 5 · 4 · k + 5− 1
= 5 · 4 · k + 4
= 4(5k + 1)

Hence 4|5n − 1 by definition of divides. □



∀ n ∈ W, 4|5n − 1

Proof. By induction on n.

Base case. Suppose n = 0. Then 50 − 1 = 1− 1 = 0 = 4 · 0. Hence 4|50 − 1
by the definition of divides.

Inductive case. Suppose n > 0 and 4|5n−1 − 1.
Then, by definition of divides, there exists k ∈ W such that 5n−1 − 1 = 4k.
Moreover,

5n − 1 = 5 · 5n−1 − 1 by algebra, unless otherwise noted. . .
= 5 · (5n−1 − 1 + 1)− 1
= 5(4k + 1)− 1 by the inductive hypothesis
= 5 · 4 · k + 5− 1
= 5 · 4 · k + 4
= 4(5k + 1)

Hence 4|5n − 1 by definition of divides. □



∀ n ∈ W, 4|5n − 1

Proof. By induction on n.

Base case. Suppose n = 0. Then 50 − 1 = 1− 1 = 0 = 4 · 0. Hence 4|50 − 1
by the definition of divides.

Inductive case. Suppose 4|5n − 1 for some n ≥ 0.
Then, by definition of divides, there exists k ∈ W such that 5n − 1 = 4k.
Moreover,

5n+1 − 1 = 5 · 5n − 1 by algebra, unless otherwise noted. . .
= 5 · (5n − 1 + 1)− 1
= 5(4k + 1)− 1 by the inductive hypothesis
= 5 · 4 · k + 5− 1
= 5 · 4 · k + 4
= 4(5k + 1)

Hence 4|5n+1 − 1 by definition of divides. □



To prove ∀ n ∈ W, I (n),

▶ Show I (0)

▶ Show ∀ n ∈ W, I (n) → I (n + 1), that is

Suppose n ≥ 0 such that I (n)
...
I (n + 1)

Alternately, show ∀n ∈ W such that n > 0, I (n − 1) → I (n), that is

Suppose n ≥ 0 such that I (n − 1)
...
I (n)

▶ Conlude ∀ n ∈ W, I (n)

The principle of mathematical induction is

[I (0) ∧ ∀ n ∈ W, I (n) → I (n + 1)] → [∀ n ∈ W, I (n)]



1∑
i=1

i = 1 = 1 = 1·2
2

2∑
i=1

i = 1 + 2 = 3 = 2·3
2

3∑
i=1

i = 1 + 2 + 3 = 6 = 3·4
2

4∑
i=1

i = 1 + 2 + 3 + 4 = 10 = 4·5
2

5∑
i=1

i = 1 + 2 + 3 + 4 + 5 = 15 = 5·6
2



Ex 7.3.1. ∀n ∈ N,
∑n

i=1 i =
n(n+1)

2 .

Proof. By induction on n.
Base case. Suppose n = 1. Then

∑1
i=1 i = 1 = 1(1+1)

2 .

Inductive case. Suppose that for some n ≥ 1,
∑n

i=1 i =
n(n+1)

2 . Then∑n+1
i=1 i = n + 1 +

∑n
i=1 i by definition of summation

= n + 1 + n(n+1)
2 by the inductive hypothesis

= 2n+2+n2+n
2 by algebra

= n2+3n+2
2 “

= (n+1)(n+2)
2 “ □



Ex 7.3.1. ∀n ∈ N,
∑n

i=1 i =
n(n+1)

2 .

Proof. By induction on n.
Base case. Suppose n = 1. Then

∑1
i=1 i = 1 = 1(1+1)

2 .

Inductive case. Suppose that for some n ≥ 1,
∑n

i=1 i =
n(n+1)

2 . Then∑n+1
i=1 i = n + 1 +

∑n
i=1 i by definition of summation

= n + 1 + n(n+1)
2 by the inductive hypothesis

= 2n+2+n2+n
2 by algebra

= n2+3n+2
2 “

= (n+1)(n+2)
2 “ □



Observe:

|A| |P(A)|

|∅| = 0 |{∅}| = 1

|{a}| = 1 |{∅, {a}}| = 2

|{a, b}| = 2 |{∅, {a}, {b}, {a, b}}| = 4

|{a, b, c}| = 3 |{∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}s}| = 8



Conjecture: For any finite set A, |P(A)| = 2|A|.

Theorem 7.5. For all n ∈ W, if A is a set such that |A| = n, then |P(A)| = 2n.



Theorem 7.5. For all n ∈ W, if A is a set such that |A| = n, then |P(A)| = 2n.

Proof. By induction on n.
Base case. Suppose n = 0. Then A = ∅, and |P(A)| = |{∅}| = 1 = 20.
Inductive case. Suppose for some n ≥ 0, if A is a set such that |A| = n, then
|P(A)| = 2n. Suppose further than A is a set such that |A| = n + 1.

Since |A| > 0, let a ∈ A. By Corollary 4.12, P(A− {a}) and {C ∪ {a} | C ∈
P(A− {a})} make a partition of P(A). Then

|P(A− {a})| = |{C ∪ {a} | C ∈ P(A− {a})}| by Exercise 6.6.6
|A− {a}| = |A| − |{a}| since {a} ⊆ A, and by Ex 7.3.6

= n + 1− 1 by supposition
= n by arithmetic

|P(A− {a})| = 2n by the inductive hypothesis
|P(A)| = |P(A− {a})|

+|{C ∪ {a} | C ∈ P(A− {a})}| by Theorem 6.12
= 2n + 2n by substitution
= 2n+1 by algebra.□



Iterated union (similar for intersection):

n⋃
i=1

Ai = A1 ∪ A2 ∪ · · · ∪ An

Ex 7.3.6. ∀ n ∈ N,
n⋃

i=1

Ai =
n⋂

i=1

Ai

Proof. By induction on n.

Base case. Suppose n = 1. Then

1⋃
i=1

Ai = Ai =
1⋂

i=1

A1



Inductive case. Suppose
n⋃

i=1

Ai =
n⋂

i=1

Ai for some n ≥ 1. Then

n+1⋃
i=1

Ai = An+1 ∪
n⋃

i=1

Ai by definition of iterated union

= An+1 ∩
n⋃

i=1

Ai by Ex 4.2.13 (DeMorgan’s law of sets)

= An+1 ∩
n⋂

i=1

Ai by the inductive hypothesis

=
n+1⋂
i=1

Ai by the definition of iterated intersection

□



For next time:
Do Exercises 7.3.(2, 4, 7, 8)

Read 7.4


