Chapter 7 outline:

- \blacktriangleright Recursively-defined sets (last week Monday)
- ▶ Structural induction (Monday)
- Mathematical induction (**Today**)
- ▶ Non-recursive programs—loops (Friday)
- Loop invariant proofs (next week Monday)
- ▶ A language processor The Huffman encoding (next week Wednesday)

Last time we saw self-referential proofs for propositions quantified over recursively defined sets, structural induction.

Today we see self-referential proofs for propositions quantified over the natural numbers and whole numbers.

- ▶ Opening examples and observations
- General form of mathematical induction
- \triangleright Comments on the term *induction*
- Other examples, including on sets

 \bullet

네 □ ▶ 네 ○ ▶ 네 그 ▶ 네 그 ▶ │ 그는 시 ⊙ Q ⊙

 \bullet

 \bullet

 \bullet

K □ X K @ X K 할 X X 할 X (할 X) 할 X X 9 Q Q ·

Conjecture:

$$
\forall n \in \mathbb{N}, \sum_{i=1}^n (2i-1) = n^2
$$

$$
\sum_{i=1}^{5} (2i-1) = (2 \cdot 1 - 1) + (2 \cdot 2 - 1) + (2 \cdot 3 - 1) + (2 \cdot 4 - 1) + (2 \cdot 5 - 1) = 1 + 3 + 5 + 7 + 9
$$

Recall the Peano definition of W. Similarly for N: $n \in \mathbb{N}$ if $n = 1$ or $n = x + 1$ for some $x \in \mathbb{N}$.

K □ ▶ K @ ▶ K 할 > K 할 > → 할 → 9 Q Q*

$$
\forall n \in \mathbb{N}, \sum_{i=1}^n (2i-1) = n^2
$$

$$
\forall n \in \mathbb{N}, \sum_{i=1}^n (2i-1) = n^2
$$

Proof. Suppose $n \in \mathbb{N}$. Then either $n = 1$ or there exists $n \in \mathbb{N}$ such that $n = x + 1$. **Base case.** Suppose $n = 1$. Then

$$
\sum_{i=1}^{n} (2i - 1) = 2 - 1 = 1 = 1^2
$$

Inductive case. Suppose $n = x + 1$ such that $x \in \mathbb{N}$ and $\sum_{i=1}^{x} (2i - 1) = x^2$. Then

$$
\sum_{i=1}^{n} (2i - 1) = 2n - 1 + \sum_{i=1}^{n-1} (2i - 1)
$$
 by definition of summation
\n
$$
= 2n - 1 + \sum_{i=1}^{x} (2i - 1)
$$
 by substitution
\n
$$
= 2n - 1 + x^2
$$
 by the inductive hypothesis
\n
$$
= 2n - 1 + (n - 1)^2
$$
 by substitution
\n
$$
= 2n - 1 + n^2 - 2n + 1
$$
 by algebra (FOL)
\n
$$
= n^2
$$
 by algebra (cancellation)

メロト メタト メミト メミト 一毛

K □ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 9 Q Q *

Conjecture: $\forall n \in \mathbb{W}, 4|5^n - 1$

 $\forall n \in \mathbb{W}, \; 4|5^n-1$

K □ X K @ X K 할 X X 할 X (할 X) 할 X X 9 Q Q ·

 $\forall n \in \mathbb{W}, \; 4|5^n-1$

Proof. By induction on n.

Base case. Suppose $n = 0$. Then $5^0 - 1 = 1 - 1 = 0 = 4 \cdot 0$. Hence $4|5^0 - 1|$ by the definition of divides.

Inductive case. Suppose $n > 0$ and $4|5^{n-1} - 1$. Then, by definition of divides, there exists $k \in \mathbb{W}$ such that $5^{n-1} - 1 = 4k$. Moreover,

$$
5^{n}-1 = 5 \cdot 5^{n-1}-1
$$
 by algebra, unless otherwise noted...
\n
$$
= 5 \cdot (5^{n-1}-1+1)-1
$$

\n
$$
= 5(4k+1)-1
$$
 by the inductive hypothesis
\n
$$
= 5 \cdot 4 \cdot k + 5 - 1
$$

\n
$$
= 5 \cdot 4 \cdot k + 4
$$

\n
$$
= 4(5k+1)
$$

K □ ▶ K @ ▶ K 할 > K 할 > → 할 → 9 Q Q ·

Hence $4|5^n - 1$ by definition of divides. \square

 $\forall n \in \mathbb{W}, \; 4|5^n-1$

Proof. By induction on *n*.

Base case. Suppose $n = 0$. Then $5^0 - 1 = 1 - 1 = 0 = 4 \cdot 0$. Hence $4|5^0 - 1$ by the definition of divides.

Inductive case. Suppose $4|5^n - 1$ for some $n \ge 0$. Then, by definition of divides, there exists $k \in \mathbb{W}$ such that $5^n - 1 = 4k$. Moreover,

$$
5^{n+1} - 1 = 5 \cdot 5^{n} - 1
$$
 by algebra, unless otherwise noted...
\n
$$
= 5 \cdot (5^{n} - 1 + 1) - 1
$$

\n
$$
= 5(4k + 1) - 1
$$
 by the inductive hypothesis
\n
$$
= 5 \cdot 4 \cdot k + 5 - 1
$$

\n
$$
= 5 \cdot 4 \cdot k + 4
$$

\n
$$
= 4(5k + 1)
$$

K □ ▶ K @ ▶ K 할 > K 할 > → 할 → 9 Q Q ·

Hence $4|5^{n+1} - 1$ by definition of divides. \Box

```
To prove \forall n \in \mathbb{W}, l(n),
\blacktriangleright Show I(0)▶ Show \forall n \in \mathbb{W}, l(n) \rightarrow l(n+1), that is
    Suppose n \geq 0 such that I(n).
     .
     .
    I(n+1)Alternately, show \forall n \in \mathbb{W} such that n > 0, I(n-1) \rightarrow I(n), that is
    Suppose n \geq 0 such that I(n-1).
     .
     .
    I(n)
```
▶ Conlude $\forall n \in \mathbb{W}$, $I(n)$

The principle of mathematical induction is

$$
[I(0) \ \land \ \forall \ n \in \mathbb{W}, I(n) \rightarrow I(n+1)] \rightarrow [\forall \ n \in \mathbb{W}, I(n)]
$$

K ロンド K 個 > F K 할 > F K 할 > F - 할

HO → H@ → H 를 → H 를 → 를 → 수익(*)

Ex 7.3.1.
$$
\forall n \in \mathbb{N}, \ \sum_{i=1}^{n} i = \frac{n(n+1)}{2}
$$
.

K □ X K @ X K 할 X X 할 X (할 X) 할 X X 9 Q Q ·

Ex 7.3.1. $\forall n \in \mathbb{N}, \quad \sum_{i=1}^{n} i = \frac{n(n+1)}{2}$ $\frac{1}{2}$.

> **Proof.** By induction on *n*. **Base case.** Suppose $n = 1$. Then $\sum_{i=1}^{1} i = 1 = \frac{1(1+1)}{2}$. **Inductive case.** Suppose that for some $n \geq 1$, $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$ $\frac{n+1}{2}$. Then

> > $\sum_{i=1}^{n+1} i = n+1 + \sum_{i=1}^{n} i$ by definition of summation

 $=$ $n+1+\frac{n(n+1)}{2}$ by the inductive hypothesis

 $^{\prime}$

" □

K □ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

 $=\frac{2n+2+n^2+n^2}{2}$ $\frac{+n^{2}+n}{2}$ by algebra

$$
= \frac{n^2+3n+2}{2}
$$

$$
= \frac{(n+1)(n+2)}{2}
$$

Observe:

K □ ▶ K @ ▶ K 할 > K 할 > → 할 → 9 Q Q*

Conjecture: For any finite set A , $|\mathscr{P}(A)| = 2^{|A|}$.

Theorem 7.5. For all $n \in \mathbb{W}$, if A is a set such that $|A| = n$, then $|P(A)| = 2^n$.

K □ ▶ K @ ▶ K 할 > K 할 > → 할 → 9 Q Q →

Theorem 7.5. For all $n \in \mathbb{W}$, if A is a set such that $|A| = n$, then $|\mathscr{P}(A)| = 2^n$. Proof. By induction on n.

Base case. Suppose $n = 0$. Then $A = \emptyset$, and $|\mathscr{P}(A)| = |\{\emptyset\}| = 1 = 2^0$. **Inductive case.** Suppose for some $n \geq 0$, if A is a set such that $|A| = n$, then $|\mathscr{P}(A)| = 2^n$. Suppose further than A is a set such that $|A| = n + 1$.

Since $|A| > 0$, let $a \in A$. By Corollary 4.12, $\mathscr{P}(A - \{a\})$ and $\{C \cup \{a\} \mid C \in A\}$ $\mathscr{P}(A - \{a\})$ make a partition of $\mathscr{P}(A)$. Then

|P(A − {a})| = |{C ∪ {a} | C ∈ P(A − {a})}| by Exercise 6.6.6 |A − {a}| = |A| − |{a}| since {a} ⊆ A, and by Ex 7.3.6 = n + 1 − 1 by supposition = n by arithmetic |P(A − {a})| = 2ⁿ by the inductive hypothesis |P(A)| = |P(A − {a})| +|{C ∪ {a} | C ∈ P(A − {a})}| by Theorem 6.12 = 2ⁿ + 2ⁿ by substitution = 2n+1 by algebra.□

K □ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Iterated union (similar for intersection):

$$
\bigcup_{i=1}^{n} A_{i} = A_{1} \cup A_{2} \cup \cdots \cup A_{n}
$$

Ex 7.3.6. $\forall n \in \mathbb{N}, \bigcup_{i=1}^{n} A_{i} = \bigcap_{i=1}^{n} \overline{A_{i}}$

Proof. By induction on n.

Base case. Suppose $n = 1$. Then

$$
\overline{\bigcup_{i=1}^1 A_i} = \overline{A_i} = \bigcap_{i=1}^1 \overline{A_1}
$$

メロメ メタメ メミメ メミメン ミー

Inductive case. Suppose $\begin{bmatrix} n \\ n \end{bmatrix}$ $i=1$ $A_i = \bigcap^{n}$ $i=1$ A_i for some $n \geq 1$. Then

$$
\bigcup_{i=1}^{n+1} A_i = \overline{A_{n+1} \cup \bigcup_{i=1}^{n} A_i}
$$
 by definition of iterated union

$$
= \overline{A_{n+1}} \cap \bigcup_{i=1}^{n} A_i \quad \text{by Ex 4.2.13 (DeMorgan's law of sets)}
$$

$$
= \overline{A_{n+1}} \cap \bigcap_{i=1}^{n} \overline{A_i} \quad \text{by the inductive hypothesis}
$$

=

□

n \cap +1

 $i=1$

by the definition of iterated intersection

K □ ▶ K @ ▶ K 할 > K 할 > → 할 → 9 Q Q ·

For next time:

Do Exercises 7.3.(2, 4, 7, 8)

Read 7.4

