Chapter 5 roadmap:

- ▶ Introduction to relations (Wednesday)
- ▶ Properties of relations (Today and Wednesday)

メロト メタト メミト メミト 一毛 …

 2990

- ▶ Closures (Friday)
- ▶ Partial order relations (next week Monday)

"Today" (Monday and Wednesday):

- ▶ Review of definitions from last time
- \blacktriangleright Revisit proofs from alst time
- ▶ Hints on homework problems
- ▶ Properties of relations
	- \blacktriangleright Reflexivity
	- ▶ Symmetry
	- ▶ Transitivity
- \blacktriangleright Proofs
- ▶ More proofs

Coming up:

Due Monday: Take quiz on Section 5.(1&2), read Section 5.3

Due Tuesday: Do Exercises 5.1.5 and 5.2.(7, 8, 10, 11, 12, 13, 13b, 14) See Canvas for hints/explanations.

★ ロン → (部) → → (語) → (語) → (語)

 2990

Due Wednesday: Take quiz on Section 5.3 Due Friday: Do Exercises 5.3.(2, 3, 4, 21, 23, 24, 34, 36, 37) Read Section 5.4 Take quiz on Section 5.4

Consider the set of students {Alice, Bob, Carol, Dave}. Suppose they all sit in the front row, with this seating arrangement:

Consider the relation $sitsNextTo$ on this set. Determine which of the following are true.

 $Card \in$ sitsNext To

```
(Dave, Alice) \in sitsNext To
```
 $(Dave, Bob) \in *sitsNextTo*$

 $(Alice, Carol) = sitsNextTo$

sitsNext $To = \{{\rm Dave}, {\rm Alice}, {\rm Carol}, {\rm Bob}\}$

sitsNext $To = \{(\text{Dave}, \text{Alice}), (\text{Alice}, \text{Carol}), (\text{Carol}, \text{Bob})\}.$

 s itsNext $To =$ {(Alice, Carol),(Alice, Dave),(Bob, Carol),(Carol, Alice),(Carol, Bob),(Dave, Alice)}

K ロンド K (日) 시 (毛) X (毛) X (毛)

 $2Q$

K □ X K @ X K 할 X X 할 X (할 X) 할 X X 9 Q Q ·

Theorem 5.1 If $a, b \in \mathbb{N}$ and $a|b$, then $\mathcal{I}_1(b) \subseteq \mathcal{I}_1(a)$.

Proof. Suppose a, $b \in \mathbb{N}$ and a|b. By definition of divides, there exists $i \in \mathbb{N}$ such that $a \cdot i = b$.

Suppose further that $c \in \mathcal{I}_{|}(b)$. By definition of image, b $|c|$. By definition of divides, there exists $i \in \mathbb{N}$ such that $b \cdot i = c$.

By substitution, $a \cdot i \cdot j = c$, and so a|c by definition of divides. By definition of image, $c \in \mathcal{I}^1$ and by definition of subset, \mathcal{I}^1 (b) $\subseteq \mathcal{I}^1$ (a). \Box

K □ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Theorem 5.2 If R is a relation on a set A, $a \in A$, and $\mathcal{I}_R(a) \neq \emptyset$, then $a \in \mathcal{I}_{R-1}(\mathcal{I}_R(a)).$

Proof. Suppose R is a relation on A, $a \in A$, and $\mathcal{I}_R(a) \neq \emptyset$.

Let $b \in \mathcal{I}_R(a)$. By definition of image, $(a, b) \in R$. By definition of inverse, $(b,a)\in R^{-1}$. By definition of image (extended for sets), $a\in \mathcal{I}_{R^{-1}}(\mathcal{I}_{R}(a))$. \Box

K □ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Ex 5.2.7. Prove that if R is a relation on a set A and $(a, b) \in R$, then $\mathcal{I}_R(b) \subseteq \mathcal{I}_{R \circ R}(a)$.

Ex 5.2.8. Suppose R is a relation from a set X to a set Y and $A \subseteq X$. Is the following true?

 $\mathcal{I}_{R-1}(\mathcal{I}_R(A)) \subset A$.

Prove or give a counterexample for each.

Attempted proof. Suppose $x \in \mathcal{I}_{R-1}(\mathcal{I}_R(A))$. [We want $x \in A$.]

By definition of image, there exists $y\in \mathcal{I}_R(A)$ such that $(y,x)\in R^{-1}.$

[From $y \in \mathcal{I}_R(A)$] By definition of image, there exists $a \in A$ such that $(a, y) \in R$.

[From $(y, x) \in R^{-1}$] By definition of relation inverse, $(x, y) \in R$

[We know a $\in A$, and both $(a, y) \in R$ and $(x, y) \in R$. Could it be that $a = x$? Doesn't seem to be a way to prove that. . . I seem stuck]

Counterexample. Let $X = \{x, a\}$, $A = \{a\}$, and $Y = \{y\}$. Let $R = \{(x, y), (a, y)\}.$ Then $R^{-1} = \{(y, x), (y, a)\}$, $\mathcal{I}_R(A) = \{y\}$, and $\mathcal{I}_{R^{-1}}(\mathcal{I}_R(A)) = \{x, a\}$ In this example, $\mathcal{I}_{R-1}(\mathcal{I}_R(A)) \not\subset A$.

Ex 5.2.9. Prove that if R is a relation from A to B, then $i_B \circ R = R$.

Proof. First suppose $(x, y) \in i_B \circ R$. By definition of composition, there exists $b \in B$ such that $(x, b) \in R$ and $(b, y) \in i_B$.

By definition of the identity relation, $b = y$. By substitution, $(x, y) \in R$. Hence $i_{\mathsf{B}} \circ \mathsf{R} \subseteq \mathsf{R}$ by definition of subset.

Next suppose $(x, y) \in R$. By how R is defined, we know $x \in A$ and $y \in B$.

By definition of the identity relation, $(y, y) \in i_B$. By definition of composition, $(x, y) \in i_B \circ R$. Hence $R \subseteq i_B \circ R$.

K □ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 ⊙ Q Q ^

Therefore, by definition of set equality, $i_B \circ R = R$. \Box

Ex 5.2.10. $(R^{-1})^{-1} = R$.

Ex 5.2.11. If R is a relation from A to B, is $R^{-1} \circ R = i_A$? Prove or give a counterexample.

Reflexivity **Symmetry** Symmetry Transitivity

Informal Everything is related to itself All pairs are mutual Anything reachable by two hops is

Formal $\forall x \in X, (x, x) \in R$ $\forall x, y \in X, (x, y) \in R \rightarrow \forall x, y, z \in X$,

 $(y, x) \in R$ OR $\forall (x, y) \in R, (y, x) \in R$

reachable by one hop

 $(x, y), (y, z) \in R \rightarrow (x, z) \in R$ OR $\forall (x, y), (y, z) \in R, (x, z) \in R$

 \mathcal{E}

Examples $\subseteq, \leq, \geq, \equiv, i$, isAquaintedWith, waterVerticallyAligned

≡, isOppositeOf, isOnSameRiver, isAquaintedWith $\langle \langle \rangle \langle \rangle \rangle$, $\langle \rangle$, $\langle \rangle$, is Taller Than, isAncestorOf, isWestOf

 \mathcal{E}

メロト メタト メモト メモト 造 299

K □ X K @ X K 할 X X 할 X (할 X) 할 X X 9 Q Q ·

Theorem 5.5. $|$ (divides) is reflexive.

Exercise 5.3.1. | (divides) is not symmetric.

Theorem 5.6. $R \cap R^{-1}$ is symmetric.

Theorem 5.7. \vert is transitive.

Exercise 5.3.19. $R^{-1} \circ R$ is reflexive. (False)

Exercise 5.3.20. If R and S are both reflexive, then $R \cap S$ is reflexive.

Exercise 5.3.22. If R and S are both symmetric, then $(S \circ R) \cup (R \circ S)$ is symmetric.

Based on Exercise 5.3.32. If R is transitive, then $R \circ R \subseteq R$.

Exercise 5.3.26. If R is transitive, $\mathcal{I}_R(\mathcal{I}_R(A)) \subseteq \mathcal{I}_R(A)$.

Exercise 5.3.31. If R is reflexive and

(for all $a, b, c \in A$, if $(a, b) \in R$ and $(b, c) \in R$ then $(c, a) \in R$),

K □ ▶ K @ ▶ K 할 > K 할 > → 할 → 9 Q Q ·

then R is an equivalence relation.

For next time (Friday, Nov 1):

Due Friday: Do Exercises 5.3.(2, 3, 4, 21, 23, 24, 34, 36, 37) Read Section 5.4 Take quiz on Section 5.4

メロト メタト メミト メミト 一毛

 299