Chapter 5 roadmap:

- Introduction to relations (Wednesday)
- Properties of relations (Today and Wednesday)

▲ロト ▲圖ト ▲画ト ▲画ト 三回 - のへで

- Closures (Friday)
- Partial order relations (next week Monday)
- "Today" (Monday and Wednesday):
 - Review of definitions from last time
 - Revisit proofs from alst time
 - Hints on homework problems
 - Properties of relations
 - Reflexivity
 - Symmetry
 - Transitivity
 - Proofs
 - More proofs

Coming up:

Due Monday: Take quiz on Section 5.(1&2), read Section 5.3

Due **Tuesday**: Do Exercises 5.1.5 and 5.2.(7, 8, 10, 11, 12, 13, 13b, 14) See Canvas for hints/explanations.

▲□▶ ▲圖▶ ▲필▶ ▲필▶ 三里

Due Wednesday: Take quiz on Section 5.3 Due Friday: Do Exercises 5.3.(2, 3, 4, 21, 23, 24, 34, 36, 37) Read Section 5.4 Take quiz on Section 5.4 Consider the set of students {Alice, Bob, Carol, Dave}. Suppose they all sit in the front row, with this seating arrangement:

Dave	Alice	Carol	Bob	
------	-------	-------	-----	--

Consider the relation *sitsNextTo* on this set. Determine which of the following are true.

 $\mathsf{Carol} \in \textit{sitsNextTo}$

```
(Dave, Alice) \in sitsNextTo
```

 $(Dave, Bob) \in sitsNextTo$

(Alice, Carol) = *sitsNextTo*

sitsNextTo = {Dave, Alice, Carol, Bob }

 $sitsNextTo = \{(Dave, Alice), (Alice, Carol), (Carol, Bob)\}.$

sitsNextTo =
{(Alice, Carol), (Alice, Dave), (Bob, Carol), (Carol, Alice), (Carol, Bob), (Dave, Alice)}

(日) (四) (王) (王) (王) (王)

A relation from one set to another	R	set of pairs	subset of $X \times Y$ $R \subseteq X \times Y$	isEnrolledIn, isTaughtBy
A relation on a set	R	set of pairs	subset of $X \times X$ $R \subseteq X \times X$	eats, divides
The image of an element under a relation	$\mathcal{I}_R(a)$	set	set of things that a is related to $\mathcal{I}_R(a) = \{b \in Y \mid (a, b) \in R\}$	classes Bob is enrolled in, numbers that 4 divides
The image of a set under a relation	$\mathcal{I}_R(A)$	set	set of things that things in A are related to $\mathcal{I}_R(A) = \{ b \in Y \mid \exists a \in A \mid (a, b) \in R \}$	classes Bob, Larry, or Alice are taking, numbers that 2, 3, or 5 divide
The inverse of a relation	R^{-1}	relation	the arrows/pairs of R reversed $R^{-1} = \{(b, a) \in Y \times X \mid (a, b) \in R\}$	hasOnRoster, teaches, isEatenBy, isDivisibleBy
The composition of two relations	<i>S</i> ∘ <i>R</i>	relation	two hops combined to one hop (Assume $S \subseteq Y \times Z$) $S \circ R = \{(a, c) \in X \times Z \mid \exists \ b \in Y \ \mid (a, b) \in R \land (b, c) \in S\}$	hasAsProfessor, eatsSomethingThatEats
The identity relation on a set	i _X	relation	everything is related only to itself $i_X = \{(x, x) \mid x \in X\}$	=

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Theorem 5.1 If $a, b \in \mathbb{N}$ and a|b, then $\mathcal{I}_{|}(b) \subseteq \mathcal{I}_{|}(a)$.

Proof. Suppose $a, b \in \mathbb{N}$ and a|b. By definition of divides, there exists $i \in \mathbb{N}$ such that $a \cdot i = b$.

Suppose further that $c \in \mathcal{I}_{|}(b)$. By definition of image, b|c. By definition of divides, there exists $j \in \mathbb{N}$ such that $b \cdot j = c$.

By substitution, $a \cdot i \cdot j = c$, and so a|c by definition of divides. By definition of image, $c \in \mathcal{I}_{|}(a)$, and by definition of subset, $\mathcal{I}_{|}(b) \subseteq \mathcal{I}_{|}(a)$. \Box

▲ロト ▲圖ト ▲画ト ▲画ト 三回 - のへで

Theorem 5.2 If *R* is a relation on a set *A*, $a \in A$, and $\mathcal{I}_R(a) \neq \emptyset$, then $a \in \mathcal{I}_{R^{-1}}(\mathcal{I}_R(a))$.

Proof. Suppose R is a relation on A, $a \in A$, and $\mathcal{I}_R(a) \neq \emptyset$.

Let $b \in \mathcal{I}_R(a)$. By definition of image, $(a, b) \in R$. By definition of inverse, $(b, a) \in R^{-1}$. By definition of image (extended for sets), $a \in \mathcal{I}_{R^{-1}}(\mathcal{I}_R(a))$. \Box

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○○

Ex 5.2.7. Prove that if R is a relation on a set A and $(a, b) \in R$, then $\mathcal{I}_R(b) \subseteq \mathcal{I}_{R \circ R}(a)$.

Ex 5.2.8. Suppose *R* is a relation from a set *X* to a set *Y* and $A \subseteq X$. Is the following true?

 $\mathcal{I}_{R^{-1}}(\mathcal{I}_R(A)) \subseteq A.$

Prove or give a counterexample for each.

Attempted proof. Suppose $x \in \mathcal{I}_{R^{-1}}(\mathcal{I}_R(A))$. [We want $x \in A$.]

By definition of image, there exists $y \in \mathcal{I}_R(A)$ such that $(y, x) \in R^{-1}$.

[From $y \in \mathcal{I}_R(A)$] By definition of image, there exists $a \in A$ such that $(a, y) \in R$.

[From $(y, x) \in R^{-1}$] By definition of relation inverse, $(x, y) \in R$

[We know $a \in A$, and both $(a, y) \in R$ and $(x, y) \in R$. Could it be that a = x? Doesn't seem to be a way to prove that... I seem stuck]

Counterexample. Let $X = \{x, a\}$, $A = \{a\}$, and $Y = \{y\}$. Let $R = \{(x, y), (a, y)\}$. Then $R^{-1} = \{(y, x), (y, a)\}$, $\mathcal{I}_R(A) = \{y\}$, and $\mathcal{I}_{R^{-1}}(\mathcal{I}_R(A)) = \{x, a\}$ In this example, $\mathcal{I}_{R^{-1}}(\mathcal{I}_R(A)) \not\subseteq A$. **Ex 5.2.9.** Prove that if R is a relation from A to B, then $i_B \circ R = R$.

Proof. First suppose $(x, y) \in i_B \circ R$. By definition of composition, there exists $b \in B$ such that $(x, b) \in R$ and $(b, y) \in i_B$.

By definition of the identity relation, b = y. By substitution, $(x, y) \in R$. Hence $i_B \circ R \subseteq R$ by definition of subset.

Next suppose $(x, y) \in R$. By how R is defined, we know $x \in A$ and $y \in B$.

By definition of the identity relation, $(y, y) \in i_B$. By definition of composition, $(x, y) \in i_B \circ R$. Hence $R \subseteq i_B \circ R$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○○

Therefore, by definition of set equality, $i_B \circ R = R$. \Box

Ex 5.2.10. $(R^{-1})^{-1} = R$.

Ex 5.2.11. If *R* is a relation from *A* to *B*, is $R^{-1} \circ R = i_A$? Prove or give a counterexample.

ReflexivityInformalEverything is related to itselfFormal $\forall x \in X, (x, x) \in R$

Symmetry

All pairs are mutual

Transitivity

Anything reachable by two hops is reachable by one hop

 $\begin{aligned} \forall x, y, z \in X, \\ (x, y), (y, z) \in R \rightarrow (x, z) \in R \\ \text{OR} \\ \forall (x, y), (y, z) \in R, (x, z) \in R \end{aligned}$

≡, isOppositeOf, isOnSameRiver, isAquaintedWith $<, \leq, >, \geq, \subseteq$, isTallerThan, isAncestorOf, isWestOf

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

	Reflexivity	Symmetry	Transitivity
Formal	$\forall x \in X, (x,x) \in R$	$\forall x, y \in X, (x, y) \in R \rightarrow (y, x) \in R$ OR $\forall (x, y) \in R, (y, x) \in R$	$ \forall x, y, z \in X, (x, y), (y, z) \in R \rightarrow (x, z) \in R OR \forall (x, y), (y, z) \in R, (x, z) \in R $
Analytical use	Suppose R is reflexive and $a \in X$.	Suppose R is symmetric $[a, b \in X]$ and $(a, b) \in R$.	Suppose R is transitive $[a, b, c \in X]$ and $(a, b), (b, c) \in R$.
	Then $(a, a) \in R$.	Then $(b, a) \in R$	Then $(a, c) \in R$.
Synthetic use	Suppose $a \in X$.	Suppose $(a, b) \in R$.	Suppose $(a, b), (b, c) \in R$.
	$(a,a)\in R.$ Hence R is reflexive.	$(b,a)\in R.$ Hence R is symmetric.	$(a,c)\in R.$ Hence R is transitive.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Theorem 5.5. | (divides) is reflexive.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Exercise 5.3.1. | (divides) is not symmetric.

Theorem 5.6. $R \cap R^{-1}$ is symmetric.

Theorem 5.7. | is transitive.

Exercise 5.3.19. $R^{-1} \circ R$ is reflexive. *(False)*

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目 のへで

Exercise 5.3.20. If *R* and *S* are both reflexive, then $R \cap S$ is reflexive.

Exercise 5.3.22. If *R* and *S* are both symmetric, then $(S \circ R) \cup (R \circ S)$ is symmetric.

Based on Exercise 5.3.32. If *R* is transitive, then $R \circ R \subseteq R$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Exercise 5.3.26. If *R* is transitive, $\mathcal{I}_R(\mathcal{I}_R(A)) \subseteq \mathcal{I}_R(A)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Exercise 5.3.31. If R is reflexive and

(for all $a,b,c\in A$, if $(a,b)\in R$ and $(b,c)\in R$ then $(c,a)\in R$),

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

then R is an equivalence relation.

For next time (Friday, Nov 1):

Due Friday: Do Exercises 5.3.(2, 3, 4, 21, 23, 24, 34, 36, 37) Read Section 5.4 Take quiz on Section 5.4

(□) (@) (E) (E) E