Chapter 7 outline:

Introduction, function equality, and anonymous functions (last week Wednesday)

- \blacktriangleright Image and inverse images (last week Friday)
- \blacktriangleright Function properties and composition (Today)
- \blacktriangleright Map, reduce, filter (Wednesday)
- \blacktriangleright Cardinality (Friday)
- \triangleright Countability (next week Monday, Nov 18)
- Review (next week Wednesday, Nov 20)
- \triangleright Test 3, on Ch 5 & 6 (next week Friday, Nov 22)

Today:

- \triangleright Definition of one-to-one and onto, plus proofs
- \blacktriangleright Inverse functions
- \triangleright Definition of function composition, plus proofs

Not a function. The set of the Not a function. (There's a domain element that is (There's a domain element that is

related to two things.) https://www.mot.related to anything.)

K ロ X K @ X K @ X K @ X → @

Onto (Surjection)

Everything in the codomain is hit.

 $f: X \to Y$ is onto if $\forall y \in Y$, $\exists x \in X \mid f(x) = y.$

Analytic use:

f is onto. $v \in Y$. Hence $\exists x \in X$ such that $f(x) = y$.

Synthetic use: Suppose $y \in Y$. . .

.

(Somehow find x such that $f(x) = y$.) Therefore f is onto.

One-to-one (Injection)

Domain elements don't share.

f is one-to-one if $\forall x_1, x_2 \in X$, if $f(x_1) = f(x_2)$ then $x_1 = x_2$.

Analytic use: f is one-to-one. $f(x_1) = f(x_2)$. Hence $x_1 = x_2$.

Synthetic use: Suppose $x_1, x_2 \in X$ and $f(x_1) = f(x_2)$ (Somehow show $x_1 = x_2$.)

メロト メタト メミト メミト

准

 299

Therefore f is one-to-one.

(not one-to-one) (not onto) $|X| \ge |Y|$ $|X| \le |Y|$ $|X| = |Y|$

Onto One-to-one Both onto and one-to-one

メロト メタト メミト メミト

小温

f is one-to-one. **Proof.** Suppose $x_1, x_2 \in \mathbb{R}$ such that $f(x_1) =$ $f(x_2)$. [Want $x_1 = x_2$] Then, by how f is defined,

メロト メタト メモト メモト

造

f is one-to-one. **Proof.** Suppose $x_1, x_2 \in \mathbb{R}$ such that $f(x_1) =$ $f(x_2)$. [Want $x_1 = x_2$] Then, by how f is defined,

$$
\frac{x_1}{2} = \frac{x_2}{2}
$$

$$
x_1 = x_2
$$

メロト メタト メモト メモト

造

f is one-to-one. **Proof.** Suppose $x_1, x_2 \in \mathbb{R}$ such that $f(x_1) =$ $f(x_2)$. *[Want x*₁ = *x*₂*]* Then, by how *f* is defined,

$$
\frac{x_1}{2} = \frac{x_2}{2}
$$

$$
x_1 = x_2
$$

メロメ メタメ メミメ メミメ

 299

亳

Therefore f is one-to-one by definition. \square

 f is onto.

f is one-to-one. **Proof.** Suppose $x_1, x_2 \in \mathbb{R}$ such that $f(x_1) =$ $f(x_2)$. *[Want x*₁ = *x*₂*]* Then, by how *f* is defined,

$$
\frac{x_1}{2} = \frac{x_2}{2}
$$

$$
x_1 = x_2
$$

Therefore f is one-to-one by definition. \square

 f is onto. **Proof.** Suppose $y \in \mathbb{R}$. *[Want x such that* $f(x) = y.$

メロト メ都 トメ 君 トメ 君 ト

准

f is one-to-one. **Proof.** Suppose $x_1, x_2 \in \mathbb{R}$ such that $f(x_1) =$ $f(x_2)$. *[Want x*₁ = x₂*]* Then, by how *f* is defined,

$$
\frac{x_1}{2} = \frac{x_2}{2}
$$

$$
x_1 = x_2
$$

Therefore f is one-to-one by definition. \square

 f is onto. **Proof.** Suppose $y \in \mathbb{R}$. *[Want x such that* $f(x) = y.$ Let $x = 2y$. Then

$$
f(x) = \frac{2y}{2} = y
$$

지수는 지수는 지금을 지금 못했다.

 299

Therefore f is onto by definition \Box

Ex 6.3.4. If $A \subseteq X$ and f is one-to-one, then $f^{-1}[f[A]] \subseteq A$. (Ex 6.2.9 was, Prove $A \subseteq f^{-1}[f[A]]$, and Ex 6.2.10 was, Find a counterexample for $A = f^{-1}[f[A]]$.)

K □ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 ⊙ Q Q ^

Ex 6..3.4. If $A \subseteq X$ and f is one-to-one, then $f^{-1}[f[A]] \subseteq A$. (Ex 6.2.9 was, Prove $A \subseteq f^{-1}[f[A]]$, and Ex 6.2.10 was, Find a counterexample for $A = f^{-1}[f[A]]$.)

Ex 6.3.5. If $A \subseteq Y$ and f is onto, then $A \subseteq f[f^{-1}[A]]$.

Inverse relation: $R^{-1} = \{ (y,x) \in Y \times X \mid (x,y) \in R \}$

Since a function is a relation, a function has an inverse, but we don't know that the inverse of a function is a function.

If $f: X \rightarrow Y$ is a **one-to-one correspondence**, then

$$
f^{-1}: Y \to X = \{(y, x) \in Y \times X \mid f(x) = y\}
$$

is the *inverse function* of f

Theorem 6.8 If $f:X\to Y$ is a one-to-one correspondence, then $f^{-1}:Y\to X$ is well defined.

Proof. Suppose $y \in Y$. Since f is onto, there exists $x \in X$ such that $f(x) = y$. Hence $(y, x) \in f^{-1}$ or $f^{-1}(y) = x$.

Further suppose $(y, x_1), (y, x_2) \in f^{-1}$ (That is, suppose that both $f^{-1}(y)=x_1$ and $f^{-1}(y)=x_2$.) Then $f(x_1)=y$ and $f(x_2)=y$. Since f is one-to-one, $x_1 = x_2$.

K ロ ▶ 〈 리 ▶ 〈 코 〉 〈 코 〉 │ 코 │ ◇ Q Q ◇

Therefore, by definition of function, f^{-1} is well defined. \Box

Relation composition: If R is a relation from X to Y and S is a relation from Y to Z, then $S \circ R$ is the relation from X to Z defined as

$$
\mathsf{S}\circ\mathsf{R}=\{(x,z)\in\mathsf{X}\times\mathsf{Z}\mid \exists\; y\in\mathsf{Y}\;\text{such that}\; (x,y)\in\mathsf{R}\;\text{and}\; (y,z)\in\mathsf{S}\}
$$

Function composition: If $f : X \to Y$ and $g : Y \to Z$, then $g \circ f : X \to Z$ is defined as

$$
g\circ f=\{(x,z)\in X\times Z\mid z=g(f(x))\}
$$

Theorem 6.9 If $f : X \to Y$ and $g : Y \to Z$ are functions, then $g \circ f : X \to Z$ is well defined.

Proof. Suppose $x \in X$. Since f is a function, there exists a $y \in Y$ such that $f(x) = y$. Since g is a function, there exists a $z \in Z$ such that $g(y) = z$. By definition of composition, $(x, z) \in g \circ f$, or $g \circ f(x) = z$. Next suppose $(x, z_1), (x, z_2) \in g \circ f$, or $g \circ f(x) = z_1$ and $g \circ f(x) = z_2$. By definition of composition, there exist y_1, y_2 such that $f(x) = y_1, f(x) = y_2$, $g(y_1) = z_1$, and $g(y_2) = z_2$. Since f is a function, $y_1 = y_2$. Since g is a function, $z_1 = z_2$.

Therefore, by definition of function, $g \circ f$ is well defined. \Box

Function composition: If $f : X \to Y$ and $g : Y \to Z$, then $g \circ f : X \to Z$ is defined as

$$
g \circ f = \{(x, z) \in X \times Z \mid x = g(f(x))\}
$$

Let $f(x) = 3x$ Let $g(x) = x + 7$

Then

$$
g \circ f(x) = f(x) + 7
$$

= 3x + 7

メロメ メタメ メミメ メミメ

 2990

造

Ex 6.4.4. If $f : X \to Y$ and $g : Y \to Z$ are both onto, then $g \circ f$ is onto. **Proof.** Suppose $f : X \to Y$ and $g : Y \to Z$ are both onto.

Ex 6.4.4. If $f : X \to Y$ and $g : Y \to Z$ are both onto, then $g \circ f$ is onto. **Proof.** Suppose $f : X \to Y$ and $g : Y \to Z$ are both onto. [Now, we want to prove "ontoness." Of which function?

Proof. Suppose $f : X \to Y$ and $g : Y \to Z$ are both onto.

[Now, we want to prove "ontoness." Of which function? $g \circ f$. How do we prove λ ontoness? We pick something from the function λ the function λ the function we function λ

Proof. Suppose $f : X \to Y$ and $g : Y \to Z$ are both onto.

[Now, we want to prove "ontoness." Of which function? $g \circ f$. How do we prove ontoness? We pick something from the codomain of the function we're proving to be onto and show that it is hit. What is the codomain of $g \circ f$?

メロト メタト メミト メミトー

Proof. Suppose $f : X \to Y$ and $g : Y \to Z$ are both onto.

[Now, we want to prove "ontoness." Of which function? $g \circ f$. How do we prove ontoness? We pick something from the codomain of the function we're proving to be onto and show that it is hit. What is the codomain of $g \circ f$? Z.]

Further suppose $z \in Z$. [We need to come up with something in the domain of $g \circ f$ that hits z. The domain is X. We will use the fact that f and g are both onto.]

*ロト * 御 ▶ * 君 ▶ * 君 ▶ │ 君

Proof. Suppose $f : X \to Y$ and $g : Y \to Z$ are both onto.

[Now, we want to prove "ontoness." Of which function? $g \circ f$. How do we prove ontoness? We pick something from the codomain of the function we're proving to be onto and show that it is hit. What is the codomain of $g \circ f$? Z.

Further suppose $z \in Z$. [We need to come up with something in the domain of $g \circ f$ that hits z. The domain is X. We will use the fact that f and g are both onto.]

 γ and γ and $g(y) = z$. Similarly there exists $x \in X$ such that By definition of onto, there exists $y \in Y$ such that $f(x) = y$. Now,

> $g \circ f (x) = g(f (x))$ by definition of function compos $= g(y)$ by substitution z by substitution

> > K ロ > K 레 > K 코 > K 코 > 『코 → 이익(*)

Therefore $g \circ f$ is onto by definition. \Box

Ex 6.4.8. If $f : X \to Y$, $g : X \to Y$ and $h : Y \to Z$, h is one-to-one, and $h \circ f = h \circ g$, then $f = g$.

For next time:

Do Exercises 6.3.(2,3,6) and 6.4.(1,5,6)

No reading or quiz

