
Chapter 2 outline:

▶ Mathematical sequences and Python lists (week-before Wednesday)

▶ Recurrence relations and recursive functions (week-before Friday)

▶ Functions on lists (last week Monday)

▶ More functions on lists (last week Wednesday)

▶ Arrays, vectors, and intervals (last week Friday)

▶ Review Chapter 1 & 2 (today)

▶ Test on Chapters 1 & 2 (Wednesday)

▶ (Begin Chapter 3 Friday)

Today:

▶ General test comments

▶ Review of topics so far

▶ Specific test coaching

▶ How can I help you?



Goals of this course

▶ Write programs in the functional style

▶ Think recursively

▶ Understand sets, relations, and
functions so that they can model
real-world (and abstract) information

▶ Use formal logic to prove
mathematical propositions.

Concepts of the first two chapters

▶ Sets and their operations

▶ Sequences

▶ Python expressions, types, and
functions

▶ Python sets and lists

▶ Recursive algorithms



Concepts Testable skills

1.1. Sets and elements; Z, W, N, Q, and
R as standard examples
1.2. Values, expressions, literals, types,
operators. The idea of a value in
Python (or in computer memory) repre-
senting or modeling some real-world or
abstract/mathematical information. The
types int, float, bool, str, and type. Inte-
ger division and mod (// and %). String
operations—concatenation and multipli-
cation (+ and *), len, and in.

Analyze the type of a Python expression.
(Similarly, be able to do a type analysis
that involves the kinds of Python expres-
sions and the Python types that occur in
the subsequent sections.)



Concepts Testable skills

1.3. Variables, identifiers, functions,
parameters (actual and formal), re-
turn value/statement, function applica-
tion. Functions as values that can be
stored in variables and passed to other
functions.

Write simple Python functions. Write
Python functions that call other functions
and that take functions as parameters.

1.4. Denoting sets by listing elements and
using set-builder notation. The set type
in Python. Python set comprehensions.
Python ranges.

Describe a set using set-builder notation.
Write Python functions that use set com-
prehensions and range.

1.5. Set operations: union, intersection,
difference, symmetric difference, comple-
ment; subset, set equality. The universal
set and the empty set. Python set opera-
tors. The analogy between set operations
and arithmetic operations (on numbers).

Write Python functions that use set oper-
ators.



Concepts Testable skills

1.6. Verifying propositions about the
equality of set expressions using Venn dia-
grams.

Verify set equality propositions using Venn
diagrams, shading, labeling, and accompa-
nying verbal explanations.

1.7. Cardinality (modeled by len in
Python), disjointedness, pairwise disjoint-
edness, partitions, Cartesian products, tu-
ples.

Write Python functions that use tuples.

1.8. Powersets. Write Python functions that use sets of
sets (which requires frozen sets).



Concepts Testable skills

2.1. Sequences, zero-based indexing.
Python lists, subscripting/indexing (with
[]). List comprehensions. List concatena-
tion and multiplication. Negative indexing
and slicing.

Write Python expressions using slicing,
negative indexing, etc.
Write Python functions that use list com-
prehensions, list operations, and various
forms of subscripting.

2.2. Recurrence relations. Recursive func-
tions. Conditional expressions and state-
ments.

Write recursive Python functions.

2.3. Recursive processing of lists, such as
splitting a list as xx[0] and xx[1:].

Write recursive Python functions that pro-
cess lists.

2.4. Python arrays (ndarray) from the
NumPy (np) package. Multidimensional
subscripting/indexing. Arrays as models
of various mathematical ideas, including
vectors, matrices, and intervals.

Write Python expressions using multidi-
mensional indexing.



For next time:
Study for test. . .

Read Sections 3.(1-3) for Friday (once you have Chapter 3. . . )


