Chapter 1 outline:

- Introduction, sets and elements (week-before Wednesday)
- Python expressions (week-before Friday)
- Python functions; denoting sets (last week Wednesday)
- Set operations; visual verification of set propositions (last week Friday)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Cardinality, Cartesian products, powersets (today)
- (Begin Chapter 2 Sequence Wednesday)

Today:

- Cardinality
- Disjoint[edness], pairwise disjoint[edness], partitions
- Cartesian products

Powersets

term	grammar	informal definition	formal definition
Cardinality	noun	The cardinality of a set is the number of elements in that set.	See Chapter 6.
Disjoint	adjective	Two sets are disjoint if they have no elements in common.	X and Y are disjoint if $X \cap Y = \emptyset$.
Pairwise disjoint	adjective	A collection of sets are pairwise disjoint if no two of them have any elements in common.	The sets X_1, X_2, \ldots, X_n are pairwise disjoint if for any two sets X_i and X_j , where $i \neq j$, $X_i \cap X_j = \emptyset$.
Partition	noun	A collection of subsets of a set are a partition of that set if they are pairwise disjoint and together make up the entire set.	If X is a set, then a partition of X is a set of sets $\{X_1, X_2, \ldots, X_n\}$ such that X_1, X_2, \ldots, X_n are pairwise dis- joint and $X_1 \cup X_2 \cup \ldots \cup X_n = X$.

Compute the cardinality:

```
|\{1,2,3,4,5\}\cup\{3,4,5,6\}|
```

 $|[\mathbf{0},\pi)\cap\mathbb{Z}|$

|FacultyInThisRoom - StudentsInThisRoom|

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Which are disjoint?

 $\mathbb Z$ and $\mathbb R$

 $\mathbb Z$ and $\mathbb R^-$

[0,5) and [5,10)

Plants and Fungi

MathClasses and CSCIClasses

DeciduousTrees and ConiferousTrees

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

1.7.1 What is the cardinality of $\{0, 1, 2, ..., n\}$?

1.7.5 One might be tempted to think $|A \cup B| = |A| + |B|$, but this is not true in general. Why not? (Assume A and B are finite.)

1.7.6 Is |A - B| = |A| - |B| true in general? If so, explain why. If not, under what special circumstances is it true? (Assume A and B are finite.)

1.7.7 Consider the sets $\{1, 2, 3\}$, $\{2, 3, 4\}$, $\{3, 4, 5\}$, and $\{4, 5, 6\}$. Notice that

 $\{1,2,3\} \cap \{2,3,4\} \cap \{3,4,5\} \cap \{4,5,6\} = \emptyset$

Are these sets pairwise disjoint?

1.7.8 Describe three distinct partitions of the set $\mathbb{Z},$ apart from the partitions given in this section.

Describe the following Cartesian product: $\{-1, 0, 1\} \times \{a, b\}$

1.7.12 If A and B are finite sets, what is $|A \times B|$ in terms of |A| and |B|?

1.7.13 Based on our description of the real number plane as a Cartesian product, explain how a line can be interpreted as a set.

1.7.14 Explain how \mathbb{C} , the set of complex numbers, can be thought of as a Cartesian product.

1.7.15 Any rational number (an element of set \mathbb{Q}) has two integers as components. Why not rewrite fractions as ordered pairs (for example, $\frac{1}{2}$ as (1, 2) and $\frac{3}{4}$ as (3, 4)) and claim that \mathbb{Q} can be thought of as $\mathbb{Z} \times \mathbb{Z}$? Explain why these two sets *cannot* be thought of as two different ways to write the same set. (There are at least two reasons.)

Which are true?

$$\{3\} \in \mathscr{P}(\{1,2,3,4,5\})$$
 $3 \in \mathscr{P}(\{1,2,3,4,5\})$

 $\{3\} \subseteq \mathscr{P}(\{1, 2, 3, 4, 5\}) \qquad \qquad 3 \subseteq \mathscr{P}(\{1, 2, 3, 4, 5\})$

 $a \in A$ iff $\{a\} \in \mathscr{P}(A)$

 $a \in A \text{ iff } \{a\} \subseteq \mathscr{P}(A)$

 $A \subseteq B$ iff $A \subseteq \mathscr{P}(B)$

 $A \subseteq B$ iff $A \in \mathscr{P}(B)$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

 $\{A\}\subseteq \mathscr{P}(A)$

 $\{A\} \in \mathscr{P}(A)$

 $A \in \mathscr{P}(A)$

$$\mathbb{Z}\in\mathscr{P}(\mathbb{R})$$

 $\emptyset \in \mathscr{P}(A)$

 $\emptyset = \mathscr{P}(\emptyset)$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□▶ ◆□◆

Note that

- ▶ $a \in A$ iff $\{a\} \in \mathscr{P}(A)$
- ► $A \subseteq B$ iff $A \in \mathscr{P}(B)$
- $A \subseteq B$ iff $\mathscr{P}(A) \subseteq \mathscr{P}(B)$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

 $\blacktriangleright \mathscr{P}(\emptyset) = \{\emptyset\} \neq \emptyset$

Observe

$$\begin{aligned} \mathscr{P}(\{1,2,3\}) &= \left\{ \begin{array}{l} \emptyset \\ \{1\},\{2\},\{3\} \\ \{1,2\},\{1,3\},\{2,3\} \\ \{1,2,3\} \end{array} \right\} &= \left\{ \begin{array}{l} \{1\},\{1,2\},\{1,3\},\{1,2,3\} \\ \emptyset,\{2\},\{3\},\{2,3\} \end{array} \right\} \\ &= \mathscr{P}(\{2,3\}) \cup \begin{bmatrix} 1 \text{ added to each set} \\ \text{of } \mathscr{P}(\{2,3\}) \end{array} \right] &= \mathscr{P}(\{2,3\}) \cup \\ \left\{ \begin{array}{l} \{1\} \cup X \mid X \in \mathscr{P}(\{2,3\}) \end{array} \right\} \end{aligned}$$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

If $a \in A$, then $\mathscr{P}(A) = \mathscr{P}(A - \{a\}) \cup \{ \{a\} \cup X \mid X \in \mathscr{P}(A - \{a\}) \}$

What is $|\mathscr{P}(X)|$ in terms of |X|?

For next time:

Pg 48-50: 1.7.(2, 3, 4, 11, 20, 21, 23) Pg 43: 1.8.(2, 11, 14)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Read 2.1

Take quiz