One-third-way point of the semester:
» Documentation; Java GUI components (last week Monday)
» Git; abstract data types (last week Wednesday)
» More abstract data types; Java Collections (last week Friday)
» Review (Today)
» Test 1 (Friday)

>

Object-oriented design and class extension (next week)

Today:
» Java collections summary
» C structs, strings, and arrays
» Linked lists plus invariants and algorithmic analysis
» Java/OO vocabulary



Coming up:

» Due Wed, Feb 18 (today). Do Project 2, “First Calculator.”

» Due Thurs, Feb 19, 1:15pm. Take Canvas quiz on Java collections.
(No prelab reading.)

» Due Fri, Feb 27. Do Project 3, “Homemade Linked-list Map.”
(Recommendation: Do this by Fri, Feb 20, to help prepare for the test.)

» Due Fri, Mar 6. Do Project 4, “Text-based adventure game.” (You'll
have the next three lab periods to work on this...don’t work on it
outside of class yet.)



interface java.util.List<E> {

java.util.Iterator<E> iterator();

boolean add(E);
E get(int);

E set(int, E);
E remove(int);

class java.util.ArrayList<E>

implements List<E> {

void trimToSize();

void ensureCapacity(int);
int size(Q);

boolean isEmpty();

int index0f (Object);

int lastIndexOf (Object);
E get(int);

E set(int, E);

boolean add(E);

E remove(int);

interface java.lang.Iterable<T> {

Iterator<T> iterator();

}

interface java.lang.Comparable<T> {
public abstract int compareTo(T);

}

interface java.util.Set<E> {
int size();
boolean isEmpty();
boolean contains(Object);
Iterator<E> iterator();
boolean add(E);
boolean remove(Object);
void clear();

class java.util.HashSet<E>

implements Set<E> {
Iterator<E> iterator();
int size(Q);

boolean isEmpty();
boolean contains(Object);
boolean add(E);

boolean remove(Object);
public void clear();

interface java.util.Iterator<E> {

boolean hasNext();
E next();

interface java.util.Map<K,V> {
boolean containsKey(Object);

boolean containsValue(Object);

V get(Object);

V put(K, V);

V remove(Object) ;
Set<K> keySet();

class java.util.HashMap<V,K>
implements Map<V,K> {

boolean containsKey(Object);
boolean containsValue(Object);

V get(Object);

V put(K, V);

V remove(Object);
Set<K> keySet();
int capacity();

interface java.util.Comparator<T> {

int compare(T, T);
boolean equals(Object);



Finish the following class that implements a “homemade” map interface and uses
internal Lists to store keys and values in parallel.

public interface HomemadeMap {
String get(String key);
void put(String key, String value);
}
public class ALMap implements HomemadeMap {
private List<String> keys;
private List<String> values;
public ALMap() {
this.keys = new ArrayList<String>();
this.values = new ArrayList<String>();
¥
public String get(String key) { ...
X
public void put(String key, String value) { ...
b



Consider this C struct as defined in a header file.

/* ——= nutrition_info.h ——— */
struct nutrition_info
{

char product_name[];

int calories; // K
double protein; // grams
int vit_A; // 7 DRV

int vit_B; // /% DRV

int vit_C; // J DRV

int vit_D; // 7 DRV

+

int vitamin_list(struct nutrition_info product, char vitamins[]);

The function vitamin_list takes a value of struct nutrition_info and a char
array and writes to the given char array the names of the vitamins for which the given
product has more than 0% of the daily recommended value and returns number of
vitamins written.

Write the implementation of the function vitamin_list as it would appear in the
implementation file.



Consider the method below that converts a linked list to an array. Let n be the number
of nodes in the given linked list. Find invariants for the loops; analyze the running time
by annotating the code in a line-by-line analysis, find a function for the running time as
a function of the size of the linked list, n, and determine a big-oh category fo the
running time.

int[] linkedListToArrayl(Node head) {
int len = O;

for (Node current = head; current !'= null; current = current.next())
lent++;

int[] toReturn = new int[len];
Node current = head;
for (int i = 0; i < toReturn.length(); i++) {

toReturn[i] = current.datum();
current = current.next();

return toReturn;



Basic Java and OO vocabulary:

Object e Overloading
Class e Static method
Member

e Static variable

Instance variable e e
e Static initializer

Instance methods

e Method signature
Instance of a class

e State class vs value class
Composite type

Interf;
Reference type e Interface (concept)

Method e Subtype, supertype
Receiver e Polymorphism
Constructor e Static type vs dynamic type

Java language features: this, access modifiers (public, private), iterface
(construct).

The difference among kinds of variables: Local variable, instance variable, static variable,
formal parameter.

Kinds of members of a class: instance variable, instance method, constructor, statiec



