
One-third-way point of the semester:

▶ Documentation; Java GUI components (last week Monday)

▶ Git; abstract data types (last week Wednesday)

▶ More abstract data types; Java Collections (last week Friday)

▶ Review (Today)

▶ Test 1 (Friday)

▶ Object-oriented design and class extension (next week)

Today:

▶ Java collections summary

▶ C structs, strings, and arrays

▶ Linked lists plus invariants and algorithmic analysis

▶ Java/OO vocabulary



Coming up:

▶ Due Wed, Feb 18 (today). Do Project 2, “First Calculator.”

▶ Due Thurs, Feb 19, 1:15pm. Take Canvas quiz on Java collections.
(No prelab reading.)

▶ Due Fri, Feb 27. Do Project 3, “Homemade Linked-list Map.”
(Recommendation: Do this by Fri, Feb 20, to help prepare for the test.)

▶ Due Fri, Mar 6. Do Project 4, “Text-based adventure game.” (You’ll
have the next three lab periods to work on this. . . don’t work on it
outside of class yet.)



interface java.util.List<E> {

java.util.Iterator<E> iterator();

boolean add(E);

E get(int);

E set(int, E);

E remove(int);

}

interface java.util.Set<E> {

int size();

boolean isEmpty();

boolean contains(Object);

Iterator<E> iterator();

boolean add(E);

boolean remove(Object);

void clear();

}

interface java.util.Map<K,V> {

boolean containsKey(Object);

boolean containsValue(Object);

V get(Object);

V put(K, V);

V remove(Object);

Set<K> keySet();

}

class java.util.ArrayList<E>

implements List<E> {

void trimToSize();

void ensureCapacity(int);

int size();

boolean isEmpty();

int indexOf(Object);

int lastIndexOf(Object);

E get(int);

E set(int, E);

boolean add(E);

E remove(int);

}

class java.util.HashSet<E>

implements Set<E> {

Iterator<E> iterator();

int size();

boolean isEmpty();

boolean contains(Object);

boolean add(E);

boolean remove(Object);

public void clear();

}

class java.util.HashMap<V,K>

implements Map<V,K> {

boolean containsKey(Object);

boolean containsValue(Object);

V get(Object);

V put(K, V);

V remove(Object);

Set<K> keySet();

int capacity();

}

interface java.lang.Iterable<T> {

Iterator<T> iterator();

}

interface java.util.Iterator<E> {

boolean hasNext();

E next();

}

interface java.lang.Comparable<T> {

public abstract int compareTo(T);

}

interface java.util.Comparator<T> {

int compare(T, T);

boolean equals(Object);

}



Finish the following class that implements a “homemade” map interface and uses
internal Lists to store keys and values in parallel.

public interface HomemadeMap {

String get(String key);

void put(String key, String value);

}

public class ALMap implements HomemadeMap {

private List<String> keys;

private List<String> values;

public ALMap() {

this.keys = new ArrayList<String>();

this.values = new ArrayList<String>();

}

public String get(String key) { ...

}

public void put(String key, String value) { ...

}



Consider this C struct as defined in a header file.

/* --- nutrition_info.h --- */

struct nutrition_info

{

char product_name[];

int calories; // K

double protein; // grams

int vit_A; // % DRV

int vit_B; // % DRV

int vit_C; // % DRV

int vit_D; // % DRV

};

int vitamin_list(struct nutrition_info product, char vitamins[]);

The function vitamin_list takes a value of struct nutrition_info and a char
array and writes to the given char array the names of the vitamins for which the given
product has more than 0% of the daily recommended value and returns number of
vitamins written.
Write the implementation of the function vitamin_list as it would appear in the
implementation file.



Consider the method below that converts a linked list to an array. Let n be the number
of nodes in the given linked list. Find invariants for the loops; analyze the running time
by annotating the code in a line-by-line analysis, find a function for the running time as
a function of the size of the linked list, n, and determine a big-oh category fo the
running time.

int[] linkedListToArray1(Node head) {

int len = 0;

for (Node current = head; current != null; current = current.next())

len++;

int[] toReturn = new int[len];

Node current = head;

for (int i = 0; i < toReturn.length(); i++) {

toReturn[i] = current.datum();

current = current.next();

}

return toReturn;

}



▶ Basic Java and OO vocabulary:

• Object

• Class

• Member

• Instance variable

• Instance methods

• Instance of a class

• Composite type

• Reference type

• Method

• Receiver

• Constructor

• Overloading

• Static method

• Static variable

• Static initializer

• Method signature

• State class vs value class

• Interface (concept)

• Subtype, supertype

• Polymorphism

• Static type vs dynamic type

▶ Java language features: this, access modifiers (public, private), iterface
(construct).

▶ The difference among kinds of variables: Local variable, instance variable, static variable,
formal parameter.

▶ Kinds of members of a class: instance variable, instance method, constructor, static
variable, static method, static initializer.


