

Counting and combinatorics unit

- ▶ Cardinality and countability (**Today**)
- ▶ Combinations and permutations (Friday)
- ▶ The pigeonhole principle (next week Monday)

Today:

- ▶ Formal definition of cardinality
- ▶ Finite sets, infinite sets, and countability
- ▶ Countability proofs

Two sets X and Y have **the same cardinality as each other** if there exists a one-to-one correspondence from X to Y .

A set X is **finite** if there exists $n \in \mathbb{W}$ such that $\mathbb{Z}_n = \{0, 1, \dots, n-1\}$ has the same cardinality as X . We also say that the **cardinality** of X is n , that is, $|X| = n$.

A set X is **countably infinite** if it has the same cardinality as \mathbb{W} .

A set X is **countable** if it is either finite or countably infinite. Otherwise it is **uncountable**.

1. \mathbb{W} has the same cardinality as \mathbb{Z} .
2. $(0, 1)$ (that is, $\{x \in \mathbb{R} \mid 0 < x < 1\}$) has the same cardinality as \mathbb{R} .
3. $(0, 1)$ is uncountable.
4. The set of functions from \mathbb{N} to \mathbb{Z}_{10} is uncountable.
5. The set of strings made from the symbols $\{0, 1\}$ is countably infinite.
(We write the set of strings over $\{0, 1\}$ as $\{0, 1\}^*$.)

For next time:

To turn in, prove

1. *The set of natural numbers \mathbb{N} (positive integers) has the same cardinality as the set of perfect squares, that is $\{1, 4, 9, 16, 25, \dots\}$.*
2. *The set $[0, 1] = \{x \in \mathbb{R} \mid 0 \leq x \leq 1\}$ has the same cardinality as the set $[0, 10] = \{x \in \mathbb{R} \mid 0 \leq x \leq 10\}$.*

Take quiz