

# Welcome

CSCI 270

Wheaton College

Thomas VanDrunen

Spring 2026

# *Applied Mathematical* **TOPICS** *for Computer Science*

Please keep phones and other devices silenced and put away—not seen or heard (or used) any time during class.

## Evolution of the CSCI supporting requirements:

**Requirements for a major** in Computer Science are a minimum of 48 hours, including:

| <b>Major Requirements</b>                                               |                                                 |              |
|-------------------------------------------------------------------------|-------------------------------------------------|--------------|
| <a href="#">CSCI 123</a>                                                | Programming I: Problem Solving                  | 2-4          |
| or <a href="#">CSCI 126</a>                                             | Accelerated Introduction to Programming         |              |
| <a href="#">CSCI 143</a>                                                | Discrete Mathematics and Functional Programming | 4            |
| <a href="#">CSCI 145</a>                                                | Programming II: Object-Oriented Design          | 4            |
| <a href="#">CSCI 135</a>                                                | Software Development                            | 4            |
| <a href="#">CSCI 145</a>                                                | Data Structures & Algorithms                    | 4            |
| <a href="#">CSCI 151</a>                                                | Introduction to Computer Systems                | 4            |
| <a href="#">CSCI 149</a>                                                | Social and Ethical Issues in Computing          | 2            |
| Select 12 additional credits of computer science above 300 <sup>1</sup> |                                                 | 12           |
| <b>Supporting Courses</b>                                               |                                                 |              |
| <a href="#">MATH 125</a>                                                | Calculus I                                      | 4            |
| <a href="#">MATH 145</a>                                                | Linear Algebra                                  | 4            |
| <a href="#">PHYS 121</a>                                                | Introductory Physics I                          | 4            |
| <b>Total Credits</b>                                                    |                                                 | <b>48-50</b> |

<sup>1</sup> Excluding [CSCI 193](#) Mentored Research Seminar, [CSCI 195](#) Independent Study, and [CSCI 196](#) Internship.

# From ACM/IEEE Computer Science Curricula 2023

CS degree must require." Instead, we outline two sets of *core* requirements, a CS Core set suited to hours-limited majors and a more expansive set of CS Core plus KA Core to align with technically focused programs. The principle here is that considering the additional foundational mathematics needed for AI, data science, and quantum computing, programs ought to consider as much as possible from the more expansive CS+KA version unless there are sound institutional reasons for alternative requirements.

**Note:** the hours in a row (example: linear algebra) add up to 40 (= 5 + 35), reflecting a standard course; shorter combined courses may be created, for example, by including probability in discrete mathematics (29 hours of discrete mathematics, 11 hours of probability).

| Knowledge Unit                       | CS Core   | KA Core    |
|--------------------------------------|-----------|------------|
| <a href="#">Discrete Mathematics</a> | 29        | 11         |
| <a href="#">Probability</a>          | 11        | 29         |
| <a href="#">Statistics</a>           | 10        | 30         |
| <a href="#">Linear Algebra</a>       | 5         | 35         |
| <a href="#">Calculus</a>             | 0         | 40         |
| <b>Total</b>                         | <b>55</b> | <b>145</b> |

## MSF-Statistics: Statistics

### CS Core:

1. Basic definitions and concepts: populations, samples, measures of central tendency, variance
2. Univariate data: point estimation, confidence intervals

### KA Core:

3. Multivariate data: estimation, correlation, regression
4. Data transformation: dimension reduction, smoothing
5. Statistical models and algorithms
6. Hypothesis testing

Probability and statistics courses from the math program (Wheaton College Catalog, 2025–2026).

### **MATH 263. Introduction to Statistics. (4 Credits)**

An introduction to statistics, sampling theory, and statistical decision making from a solid mathematical basis for non-mathematics majors. Topics chosen from discrete and continuous distributions, moments, hypothesis testing, correlation and multiple correlation, regression (linear, multivariate, logistic), ANOVA, contingency tables with tests for independence, sampling theory, and rudimentary non-parametric statistics. Students will use selected software packages for data processing and analysis and will need access to a laptop and a graphing calculator with an inverse t-distribution function.

### **MATH 363. Probability Theory. (4 Credits)**

An introduction to probability theory, including discrete and continuous distributions. Topics covered include independence, conditional probability, expectation, variance and covariance, random vectors, and the central limit theorem. Students will need access to a non-CAS (Computer Algebra System) graphing calculator with an inverse t-distribution function.

Prerequisite: MATH 236 and MATH 245.

Also **MATH 386 Topics in Statistics**, **MATH 463 Mathematical Statistics**, **MATH 464 Bayesian Statistics**, and **MATH 465 Applied Machine Learning**.

- I. Discrete Mathematics Review
  - A. Sets, relations, and functions
  - B. Proof techniques
  - C. Cardinality and countability
- II. Combinatorics
  - A. Combinations and permutations
  - B. Pigeonhole principle
- III. Discrete Probability
  - A. Sample spaces and events, and the axioms of probability
  - B. Sum and product rules
  - C. Conditional, joint, and marginal probability
  - D. Discrete random variables
  - E. Expected value and variance
  - F. Common distributions
- IV. Continuous Probability
  - A. Continuous random variables
  - B. Correlation
  - C. Distributions
- V. Hypothesis testing
  - A. Elements of statistical testing
- B. Z-tests and  $p$ -values
- C. Confidence intervals
- VI. Interesting statistical results
  - A. The central limit theorem
  - B. The weak law of large numbers
  - C. Benford's law
- VII. Bayesian Reasoning
  - A. Bayes's theorem
  - B. Bayesian inference
- VIII. Graph Theory
  - A. Basic concepts and terms
  - B. Proofs of graph results
  - C. Graph isomorphisms
  - D. Varieties graphs
  - E. Graphs as models of information
- IX. Theory of Computation
  - A. Finite automata and Regular expressions
  - B. The lambda calculus
  - C. Undecidability and NP-completeness

## For next time:

- ▶ Finish discrete math review

*As best you can, complete the handout from class listing the discrete math terms to review. It's OK if you can't formulate the formal definitions, but at least give your best guess at an informal description or an example. Try to do this from memory (+ reasoning). If you are really stumped, you may check your CSCI 243 notes or textbook or confer with a classmate (i.e., a person enrolled in this course), but avoid getting answers from elsewhere.*

- ▶ Take syllabus quiz on Canvas