Prolegomena unit outline:
» Algorithms and correctness (Wed, Jan 15 and Fri, Jan 17)
» Algorithms and efficiency (Wed, Jan 22 and Fri, Jan 24)
» Abstract data types (Mon, Jan 27)
» Data Structures (Wed, Jan 29 and Fri, Jan 31)

Today and Friday:
» Go over quiz and Ex 1.6
The general meaning of efficiency
The analyses of bounded linear search, binary search, and selection sort
The precise meaning of big-oh, big-theta, and big-omega

The costs of elemental algorithms

vVvvyYyyvyy

The analysis of merge sort and quick sort

Quiz question

Loop invariant. A proposition about the state of execution preserved through all
iterations.

Correctness claim. A proposition about what an algorithm returns.

Recursion invariant. A proposition about the preconditions to every call to a recursive
method or function.

Class invariant. A proposition about the aspects of the state of an instance of a class
that do not change while other aspects of the object’s state change.

Unused asnwers
> A propositions about the interface of a class.
» A proposition about the special cases of a class.
> A conjecture about an algorithm'’s efficiency.

» A proposition about the number of iterations a loop performs.

Quiz question
What is (not) true about a class invariant?

P It can be assumed as a precondition to any method call.

> It caputers what doesn't change about an instance of a class when other parts of
that object’s state do change.

> |t must be satisfied as a postcondition to any method call.

» It applies specifically to static variables X

1.6 Write a loop invariant to capture the relationships among sequence,
smallest_so_far, smallest_pos, and i in the following algorithm to find the
smallest element in a sequence.

def find_smallest(sequence):
smallest_so_far = sequence[0]
smallest_pos = O
i=1
while i < len(sequence)
if sequence[i] < smallest_so_far
smallest_pos = i
smallest_so_far = sequence[il
i+=1
return smallest_pos

From the correctness proof of bounded_linear_search:
By Invariant 1.c [t is the number of iterations|, after at most n iterations,
i = n and the guard will fail.

From the correctness proof of binary_search (rewritten):
Let i be the number of iterations completed. Suppose i > |g n. Then 2/ > n
and 2—", <1.
By Invariant 3.b, [high — low < %] we have high — low < 1 and the guard
fails.

def bounded_linear_search(sequence, P):
ao (found = False
i=0
while(hot found and i < len(sequence{>: ai(n+1)
ay1[f0und = P(sequence[i]):

i+=1

if(found): a3
o fretum i 1)
else :

< (return 1

Tpis(n) = ao+ ai(n+ 1)+ azxn+ as + max(aa, as)
= bg+ bin

def binary_search(sequence, TO, item):

c (low = 0
high = len(sequence)

while high - low > 1); a(gn+1)

o lgn(Mid = (low + high) / 2
&ompar = TO(item, sequence[mid])}
if(compar < 0): # item comes before mid
high = mid

eli : # item comes after mid
low = mid + 1
else : # item is at mid

assert compar ==
{low = mid
high = mid + 1

if(?ow < high and TO(item, sequence[low]) == 0:) o

¢ (return low)

else :

.

7}5(”)

co+a(lgn+1)+ clgn+ ez + max(ca, cs)
= dy+dilgn

def selection_sort(sequence, TO):
for(; in range(len(sequence){):604fe1n

en

min_pos = i
min = sequence[i]

for(j in range(i + 1, 1en(sequence{):e3n47e4§jﬁzg(n4—i——1)
if TO(sequence[j], min) < 0 :
min = sequence[j] es S (n—i—1)

min_pos = j

f;equence[min_pos] = sequence[i?}
sequence[i] = min
\5€eq [i]

Tsel(n) = fh+hbn+ f:";n2

3 T : D — N relating input to running time on some platform. Interpret the
codomain N as natural numbers in some unit time.

A Tapsolute : N — N relating input size to running time on some platform.
Interpret the domain N as the number of items in the list (or other structure, for
other algorithms).

3 Tworst : N — N relating input size to the maximum running time on some
platform for all inputs of the given size.

3 Thest : N — N relating input size to the minimum running time on some
platform for all inputs of the given size.

3 Texpected : N — N relating input size to the expected value of the running time
on some platform over all inputs of the given size.

What is big-oh notation?

Big-oh is a way to categorize functions:
O(g) is the set of functions that can be bounded above by a scaled version of

g.
f(n) = O(g(n)) (or, more properly f € O(g)) means

3 ¢, no € N such that V n € [ng, 00), f(n) < cg(n)

Objections to and misconceptions of big-oh notation take forms such as

» Big-oh notation specifies only an upper bound of running time, which might be
widely imprecise.

P Big-oh notation measures only the worst case, when the best case or the typical
case might be much better.

» Big-oh ignores constants, which can greatly affect running time in practice.

» Algorithms that have the same big-oh category can have widely different running
times In practice.

» Big-oh considers only the size of the input, when in fact other attributes of the
input can greatly affect running time.

©(g) ={f:N—= N |3 c,c1,n € Nsuch that V n € [ng, 00), cog(n) < f(n) < cg(n)}

cg(n) = 3n?
1301 f(n) =2n*+3n+4
cog(n) = 2n?

100 4

50 A

int merge_sort_r(int sequencel[], int aux[], int low, int high)
{
if (low + 1 >= high)
return O;
else {
int compars = 0; // the number of comparisons
int midpoint = (low + high) / 2; // index to the middle of the range
int k, n;
n = high - low;
compars += merge_sort_r(sequence, aux, low, midpoint);
compars += merge_sort_r(sequence, aux, midpoint, high);
compars = merge(sequence, aux, low, high);
return compars;

Coel) = {

n—1+2Cns(2)

ifn<l1
otherwise

(SIE]

i=0

i/

|_gn—1 2i . (n

lgn—1
_1) = Z,’g:’()) n

= nlgn

B Zlg n—1 2,‘

i=0

— n+1

[SIE}

.
.

int quick_sort_r(int sequence[], int low, int high)
{
if (low + 1 >= high) return 0;
int i, j, temp;
int compars = 0O;
for (i = j = low; j < high-1; j++) {
compars++;
if (sequence[j] < sequencel[high-1])
{
temp = sequencel[j];
sequence[j] = sequence[i];
sequence[i] = temp;
it++;

}

temp = sequencel[i];

sequence[i] = sequence[j];

sequence[j] = temp;

return compars + quick_sort_r(sequence, low, i)
+ quick_sort_r(sequence, i+l, high);

3
|
-

3
B

w
FN‘

Algorithmic element 1

Can you jump directly to the thing you're looking for?

Algorithmic element 2

Are you descending a binary tree of the data?

Algorithmic element 3

Do you need to touch every element in the data?

Algorithmic element 4

For every element, do you need to descend a tree, or for every element in the tree, do
you touch every element?

Algorithmic element 5

For every element in the data, do you need to a suboperation on the rest of the data?

Algorithmic element 6

Do you need to consider all combinations of input elements?

Coming up:

Due Fri, Jan 24 (end of day):

Read Sections 1.(3 & 4) (long—spread out)
Do Exercises 1.(17 & 18)

Take quiz

Due Mon, Jan 27 (end of day):
Read Section 2.1

Do Exercise 1.11

Take quiz

