
Prolegomena unit outline:

▶ Algorithms and correctness (Friday, Aug 30 and Wed, Sept 4)

▶ Algorithms and efficiency (Fri, Sept 6 and Mon, Sept 9)

▶ Abstract data types (Wed, Sept 11)

▶ Data Structures (Fri, Sept 13 and Mon, Sept 16)

Today and Friday:

▶ Go over quiz and Ex 1.6

▶ The general meaning of efficiency

▶ The analyses of bounded linear search, binary search, and selection sort

▶ The precise meaning of big-oh, big-theta, and big-omega

▶ The costs of elemental algorithms

▶ The analysis of merge sort and quick sort

Quiz question

Loop invariant. A proposition about the state of execution preserved through all
iterations.

Correctness claim. A proposition about what an algorithm returns.

Recursion invariant. A proposition about the preconditions to every call to a recursive
method or function.

Class invariant. A proposition about the aspects of the state of an instance of a class
that do not change while other aspects of the object’s state change.

Unused asnwers

▶ A propositions about the interface of a class.

▶ A proposition about the special cases of a class.

▶ A conjecture about an algorithm’s efficiency.

▶ A proposition about the number of iterations a loop performs.

Quiz question
What is (not) true about a class invariant?

▶ It can be assumed as a precondition to any method call. ✓

▶ It caputers what doesn’t change about an instance of a class when other parts of
that object’s state do change. ✓

▶ It must be satisfied as a postcondition to any method call. ✓

▶ It applies specifically to static variables ✗

1.6 Write a loop invariant to capture the relationships among sequence,
smallest so far, smallest pos, and i in the following algorithm to find the
smallest element in a sequence.

def find_smallest(sequence):

smallest_so_far = sequence[0]

smallest_pos = 0

i = 1

while i < len(sequence) :

if sequence[i] < smallest_so_far :

smallest_pos = i

smallest_so_far = sequence[i]

i += 1

return smallest_pos

From the correctness proof of bounded linear search:

By Invariant 1.c [i is the number of iterations], after at most n iterations,
i = n and the guard will fail.

From the correctness proof of binary search (rewritten):

Let i be the number of iterations completed. Suppose i ≥ lg n. Then 2i ≥ n
and n

2i
≤ 1.

By Invariant 3.b, [high− low ≤ n
2i
], we have high− low ≤ 1 and the guard

fails.

a0

a1(n + 1)

a4

a5

a3

a2n

Tbls(n) = a0 + a1(n + 1) + a2n + a3 +max(a4, a5)
= b0 + b1n

c1(lg n + 1)

c4

c5

c3

c0

c2 lg n

Tbs(n) = c0 + c1(lg n + 1) + c2 lg n + c3 +max(c4, c5)
= d0 + d1 lg n

e2n

e0 + e1n

e5
∑n−1

i=0 (n − i − 1)

e3n + e4
∑n−1

i=0 (n − i − 1)

Tsel(n) = f1 + f2n + f3n
2

▶ ∃ T : D → N relating input to running time on some platform. Interpret the
codomain N as natural numbers in some unit time.

▶ ̸ ∃ Tabsolute : N → N relating input size to running time on some platform.
Interpret the domain N as the number of items in the list (or other structure, for
other algorithms).

▶ ∃ Tworst : N → N relating input size to the maximum running time on some
platform for all inputs of the given size.

▶ ∃ Tbest : N → N relating input size to the minimum running time on some
platform for all inputs of the given size.

▶ ∃ Texpected : N → N relating input size to the expected value of the running time
on some platform over all inputs of the given size.

What is big-oh notation?

Big-oh is a way to categorize functions:

O(g) is the set of functions that can be bounded above by a scaled version of
g .

f (n) = O(g(n)) (or, more properly f ∈ O(g)) means

∃ c , n0 ∈ N such that ∀ n ∈ [n0,∞), f (n) ≤ cg(n)

Objections to and misconceptions of big-oh notation take forms such as

▶ Big-oh notation specifies only an upper bound of running time, which might be
widely imprecise.

▶ Big-oh notation measures only the worst case, when the best case or the typical
case might be much better.

▶ Big-oh ignores constants, which can greatly affect running time in practice.

▶ Algorithms that have the same big-oh category can have widely different running
times in practice.

▶ Big-oh considers only the size of the input, when in fact other attributes of the
input can greatly affect running time.

Θ(g) = {f : N → N | ∃ c0, c1, n0 ∈ N such that ∀ n ∈ [n0,∞), c0g(n) ≤ f (n) ≤ cg(n)}

c1g(n) = 3n2

f (n) = 2n2 + 3n + 4

c0g(n) = 2n2

Algorithmic element 1

Can you jump directly to the thing you’re looking for?

Algorithmic element 2

Are you descending a binary tree of the data?

Algorithmic element 3

Do you need to touch every element in the data?

Algorithmic element 4

For every element, do you need to descend a tree, or for every element in the tree, do
you touch every element?

Algorithmic element 5

For every element in the data, do you need to a suboperation on the rest of the data?

Algorithmic element 6

Do you need to consider all combinations of input elements?

int merge_sort_r(int sequence[], int aux[], int low, int high)

{

if (low + 1 >= high)

return 0;

else {

int compars = 0; // the number of comparisons

int midpoint = (low + high) / 2; // index to the middle of the range

int k, n;

n = high - low;

compars += merge_sort_r(sequence, aux, low, midpoint);

compars += merge_sort_r(sequence, aux, midpoint, high);

compars = merge(sequence, aux, low, high);

return compars;

}

}

Cms(n) =

{
0 if n ≤ 1
n − 1 + 2Cms(

n
2) otherwise

2

1 1

2

1 1

2

1 1

n
2

n
2

n
4

n
4

n
4

n
4

n

n · 0

n − 1

n
2
· 1

4 · (n
4
− 1)

2 · (n
2
− 1)

∑lg n−1
i=0 2i · (n

2i
− 1) =

∑lg n−1
i=0 n −

∑lg n−1
i=0 2i

= n lg n − n + 1

int quick_sort_r(int sequence[], int low, int high)

{

if (low + 1 >= high) return 0;

int i, j, temp;

int compars = 0;

for (i = j = low; j < high-1; j++) {

compars++;

if (sequence[j] < sequence[high-1])

{

temp = sequence[j];

sequence[j] = sequence[i];

sequence[i] = temp;

i++;

}

}

temp = sequence[i];

sequence[i] = sequence[j];

sequence[j] = temp;

return compars + quick_sort_r(sequence, low, i)

+ quick_sort_r(sequence, i+1, high);

}

1

1

1 1

11 1 1 1

n

n · 0

n − 1

4 · (n−3
4

− 1)

2 · (n−1
2

− 1)n−1
2

n−1
2

n−3
4

n−3
4

n−3
4

n−3
4

1

1

1

1

n

n − 2

n − 3

n − 1

n − 1

n − 3

n − 2

n − 4

0

(n − 1) + (n − 2) + (n − 3) + · · ·+ 1 + 0 =
n−1∑
i=1

i =
n · (n − 1)

2
=

n2 − n

2

Coming up:

Due Mon, Sept 9 (end of day):
Read Sections 1.(3 & 4)
Do Exercises 1.(17 & 18)
Take quiz

Due Wed, Sept 11 (end of day):
Read Section 2.1
Do Exercise 1.11
Take quiz

