
Prolegomena unit outline:

▶ Algorithms and correctness (Wednesday and today)

▶ Algorithms and efficiency (all next week)

▶ Abstract data types (Mon, Jan 27)

▶ Data Structures (Jan 29 and 31)

Today:

▶ The “Binary search” problem

▶ Class invariants (LinkedList)



What good are invariants?

▶ They are a tool for reasoning about the state and progress of an algorithmic
process

▶ They are a way to explain the meaning of a variable and capture how the variables
relate to each other.

▶ They help with testing and debugging.

▶ They are a means for proving that an algorithm is correct.



Given a list sequence and a total order, determine whether sequence is sorted by the
given total order.

Given a list sequence sorted by a given total order TO and given an item, return

−1 if ∀ i ∈ [0, n), sequence[i ] ̸= item

k otherwise, where sequence[k] = item



Given a list sequence sorted by a given total order TO and given an item, return

−1 if ∀ i ∈ [0, n), sequence[i ] ̸= item

k otherwise, where sequence[k] = item

Invariant (Loop of binary search.)

(a) If ∃ j ∈ [0, n) such that item = sequence[j ], then ∃ j ∈ [low, high) such that
item = sequence[j ].

(b) After i iterations, high− low ≤ n
2i
.



(a) If ∃ j ∈ [0, n) such that item = sequence[j ],
then ∃ j ∈ [low, high) such that item = sequence[j ].

(b) After i iterations, high− low ≤ n
2i
.

Initialization.

(a) Initially low = 0 and high = n, so the hypothesis and conclusion are identical.

(b) No iterations yet, so

high− low = n − 0 = n =
n

1
=

n

20



(a) If ∃ j ∈ [0, n) such that item = sequence[j ],
then ∃ j ∈ [low, high) such that item = sequence[j ].

(b) After i iterations, high− low ≤ n
2i
.

Maintenance. Distinguish lowpre and lowpost, highpre and highpost. Let i be the
number of iterations completed. We’re given that if ∃ j ∈ [0, n) such that
item = sequence[j ], then ∃ j ∈ [lowpre, highpre) such that item = sequence[j ];
also that highpre − lowpre ≤ n

2i−1 (this is our inductive hypothesis). The guard also
assures us that highpre − lowpre > 1.
We have three possibilities, corresponding to the if-elif-else:



(a) If ∃ j ∈ [0, n) such that item = sequence[j ],
then ∃ j ∈ [low, high) such that item = sequence[j ].

(b) After i iterations, high− low ≤ n
2i
.

Case 1: Suppose item < sequence[mid].

(a) Since sequence is sorted, ∀ j ∈ [mid, highpre), item < sequence[j ]. Thus if
∃ j ∈ [lowpre, highpre), then ∃ j ∈ [lowpre, mid), that is (with the update to
high but not to low), ∃ j ∈ [lowpost, highpost)
Now, by transitivity of the conditional, if ∃ j ∈ [0, n) such that
item = sequence[j ], then ∃ j ∈ [lowpost, highpost) such that
item = sequence[j ].

(b) If the length of the range is odd, then the sub-ranges above and below mid are of
equal size, each half of the range length minus one. If the range length is even,
then the lower subrange is half that size and the upper subrange is one less than
half. Either way we throw away at least half and keep no more than half. So,

highpost − lowpost ≤
1

2
· (highpre − lowpre) ≤

1

2
· n

2i−1
≤ n

2i



(a) If ∃ j ∈ [0, n) such that item = sequence[j ],
then ∃ j ∈ [low, high) such that item = sequence[j ].

(b) After i iterations, high− low ≤ n
2i
.

Case 2: Suppose item = sequence[mid].

(a) Immediately we have ∃ j ∈ [mid, mid+ 1), and, with the update to high and low,
that means ∃ j ∈ [lowpost, highpost). Moreover, the conditional is T → T ≡ T .

(b) Note highpost − lowpost = 1. Earlier we said 1 < highpre − lowpre ≤ n
2i−1 .

Since highpre − lowpre must be a whole number, 2 ≤ n
2i−1 , and so 1 ≤ n

2i
.

Finally highpost − lowpost ≤ n
2i
.

Case 3: Suppose item > sequence[mid]. This is similar to Case 1. □



Correctness claim (binary search.)

After at most lg n iterations, binary search returns as specified.

Proof. Suppose i ≥ lg n. Then 2i ≥ n and n
2i

≤ 1. Hence high− low ≤ 1 and the
guard fails.
Invariant 2.a still means that if the item is anywhere, it’s in the range. The guard
implies that on loop exit the range has size 0 or 1.
Suppose the range has size 0. Then the item isn’t in the range (since nothing is), and
thus it isn’t anywhere. Since high = low, the first part of the conditional fails and and
−1 is returned, as specified.
On the other hand, suppose the range has size 1. We still don’t know if the item is in
the range, but we have only one location to check. If it’s in sequence[low], then we
return low, which meets the specification. Otherwise the second part of the condition
fails and −1 is returned, as specified. □



Invariant (Loop of binary search.)

(a) If ∃ j ∈ [0, n) such that item = sequence[j ], then ∃ j ∈ [low, high) such that
item = sequence[j ].

(b) After i iterations, high− low ≤ n
2i
.

Invariant (Preconditions of binary search recursive)

(a) If ∃ j ∈ [0, n) such that item = sequence[j ], then ∃ j ∈ [low, high) such that
item = sequence[j ].

(b) low ≤ high



Invariant (Class LinkedList)

(a) head = null iff tail = null iff size = 0.

(b) If tail ̸= null then tail.next = null.

(c) If head ̸= null then tail is reached by following size− 1 next links from head.



Coming up:

Finish the pretest project, due Tues, Jan 21

Due Thursday Jan 21 (end of day):
Read Section 1.2 (long section—spread it out)
Do Exercise 1.(6)—submit through Canvas
Take quiz (algorithms and correctness)

Due Friday, Jan 24 (end of day)
Read Sections 1.(3 & 4) (also long—spread it out)
Do exercises 1.(17 & 18)
Take quiz


