
Chapter 3, Case Studies:

▶ Linear-time sorting algorithms (last week Wednesday and Friday)

▶ Disjoint sets and array forests (Today)

▶ Priority queues and heaps (Wednesday and Friday)

▶ N-sets and bit vectors (Thursday lab)

▶ (Begin Graph unit in lab next week)

Today:

▶ Quiz solutions

▶ Problem statement

▶ Disjoint set ADT details

▶ The array forest abstraction and data structure

▶ Find and union strategies, with optimizations



static Node arrayToList1(int[] array) {

Node toReturn = new Node(array[0], null);

for (int i = 1; i < array.length; i++) {

Node current = toReturn;

while (current.next() != null)

current = current.next();

current.setNext(new Node(array[i], null));

}

return toReturn;

}

Node arrayToList2(int[] array) {

Node toReturn = null;

for (int i = array.length - 1; i >= 0; i--)

toReturn = new Node(array[i], toReturn);

return toReturn;

}

static int[] listToArray(Node head) {

int size = 0;

for (Node current = head; current != null; current = current.next())

size++;

int[] toReturn = new int[size];

int i = 0;

for (Node current = head; current != null; current = current.next())

toReturn[i++] = current.datum();

return toReturn;

}



Problem statement:
Suppose we have a collection of items connected by an unknown equivalence
relation. Efficiently find the equivalence classes in this collection as information
about the relation is discovered.
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The disjoint set ADT:

▶ Main operations: union two sets, find a set for a given element, and test if two
elements are in the same set.

▶ The universe is closed.

▶ We assume all elements can be indexed, [0,N).

▶ A set in the partition is identified by a leader.
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Invariant (Class ArrayForestDisjointSet)

For all i ∈ [0, n),

(a) leader(i) = leader(parents[i ]), that is, parents[i ] points to another element in
the same set as i .

(b) leader(i) = parents[leader(i)], that is, leaders all point to themselves.

(c) Following a finite number links implied by parents will converge, that is, there is
no circularity in the tree.
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Union strategy LazyUnion AggressiveUnion WeightedUnion LazyUnion WeightedUnion

Find strategy PlainFind PlainFind PlainFind CompressingFind CompressingFind

Find heavy: 1.30E7 3.34E7 7.40E5 9.26E5 6.68E5
(5.68E6) (8.40E3) (1.80E4) (2.38E4) (9.34E3)

Even mix: 9.89E7 4.41E7 1.20E6 1.56E6 9.80E5
(1.22E7) (9.93E3) (1.97E4) (2.12E4) (9.96E3)

Union heavy: 1.62E8 4.39E7 1.40E6 1.71E6 1.04E6
(1.26E7) (9.99E3) (2.01E4) (1.59E4) (1.00E4)



Coming up: (all end-of-day)

Do linear sorting project (Wed, Sept 23)

Due Today:
Finish reading Section 3.2 (disjoint sets and array forests)
Do Ex 2.(12 & 16) and 3.8 Take disjoint-sets quiz

Due Thurs, Sept 26:
Read Section 3.4
Do Exercises 3.(26 & 27).
Take N-sets quiz

Due Fri, Sept 27:
Read Section 3.3 (heaps and priority queues)
(no exercises)
Take heap/pq quiz


