
Chapter 3, Case Studies:

▶ Linear-time sorting algorithms (last week Wednesday and Friday)

▶ Disjoint sets and array forests (Today)

▶ Priority queues and heaps (Wednesday and Friday)

▶ N-sets and bit vectors (Thursday lab)

▶ (Begin Graph unit in lab next week)

Today:

▶ Quiz solutions

▶ Problem statement

▶ Disjoint set ADT details

▶ The array forest abstraction and data structure

▶ Find and union strategies, with optimizations



static Node arrayToList1(int[] array) {

Node toReturn = new Node(array[0], null);

for (int i = 1; i < array.length; i++) {

Node current = toReturn;

while (current.next() != null)

current = current.next();

current.setNext(new Node(array[i], null));

}

return toReturn;

}

Node arrayToList2(int[] array) {

Node toReturn = null;

for (int i = array.length - 1; i >= 0; i--)

toReturn = new Node(array[i], toReturn);

return toReturn;

}

static int[] listToArray(Node head) {

int size = 0;

for (Node current = head; current != null; current = current.next())

size++;

int[] toReturn = new int[size];

int i = 0;

for (Node current = head; current != null; current = current.next())

toReturn[i++] = current.datum();

return toReturn;

}



Problem statement:
Suppose we have a collection of items connected by an unknown equivalence
relation. Efficiently find the equivalence classes in this collection as information
about the relation is discovered.





Dave

Bob

Alice

RalphGeorgia

Carol

Nate

Trent

Ida Jack

Eve

Wendy

Karen

Xavier
Zeke

LarryHenry

Pete

Fred

Sarah
Ursulla

Vick

Olivia

Queenie
Yvette

Moira



a = c

e = a + b

d = b

g = 1

f = d + c

h = e * g



The disjoint set ADT:

▶ Main operations: union two sets, find a set for a given element, and test if two
elements are in the same set.

▶ The universe is closed.

▶ We assume all elements can be indexed, [0,N).

▶ A set in the partition is identified by a leader.



0

1

2

3

4

5
6

7

8

9

10

11
12

13

14

15

1 2 3 5

0 6 7

8

9 11

10 12

14

13 15

4



7

8

0

1

2

3

4

5
6

7

8

9

10

11
12

13

14

15

1 2 3 5

0 6

4

9

10 12

14

13 15

11



Invariant (Class ArrayForestDisjointSet)

For all i ∈ [0, n),

(a) leader(i) = leader(parents[i ]), that is, parents[i ] points to another element in
the same set as i .

(b) leader(i) = parents[leader(i)], that is, leaders all point to themselves.

(c) Following a finite number links implied by parents will converge, that is, there is
no circularity in the tree.



connected(int,int)

BruteForceDisjointSet
parents: int[]

ArrayForestDisjointSet

finder: findStrategy

unioner: unionStrategy

find(int)

union(int, int)

count()

findAll(int)

connected(int,int)

count()

findAll(int)

DisjointSet

find(int)

union(int, int)

sizes: int[]

WeightedUnion

FindStrategy

find(int)

PlainFind CompressingFind

LazyUnion AggressiveUnion

UnionStrategy

union(int, int)

finder.find(p);

unioner.union(p,q);

im
p
le

m
e
n
ts

im
p
le

m
e
n
ts

im
p
le

m
e
n
ts



Union strategy LazyUnion AggressiveUnion WeightedUnion LazyUnion WeightedUnion

Find strategy PlainFind PlainFind PlainFind CompressingFind CompressingFind

Find heavy: 1.30E7 3.34E7 7.40E5 9.26E5 6.68E5
(5.68E6) (8.40E3) (1.80E4) (2.38E4) (9.34E3)

Even mix: 9.89E7 4.41E7 1.20E6 1.56E6 9.80E5
(1.22E7) (9.93E3) (1.97E4) (2.12E4) (9.96E3)

Union heavy: 1.62E8 4.39E7 1.40E6 1.71E6 1.04E6
(1.26E7) (9.99E3) (2.01E4) (1.59E4) (1.00E4)



Coming up: (all end-of-day)

Do linear sorting project (Wed, Sept 23)

Due Today:
Finish reading Section 3.2 (disjoint sets and array forests)
Do Ex 2.(12 & 16) and 3.8 Take disjoint-sets quiz

Due Thurs, Sept 26:
Read Section 3.4
Do Exercises 3.(26 & 27).
Take N-sets quiz

Due Fri, Sept 27:
Read Section 3.3 (heaps and priority queues)
(no exercises)
Take heap/pq quiz


