
Chapter 4, Graphs:

▶ (Finish priority queues and heaps. . . (Today))

▶ Concepts and implementation (Today)

▶ Traversal (Wednesday and in lab Thursday)

▶ Minimum spanning trees (Friday and next week Monday)

▶ Single-source shortest paths (next week Wednesday and Friday)

Today:

▶ Applications of graphs

▶ Vocabulary, taxonomy, and theory

▶ Representing and implementing graphs



East 

Campus



Warrenville

Grove

McDowell

Grove

Burlington

Park

Farm

Kline Creek

Winfield

Mounds

Timber

Ridge

Wayne Woods
Pratt’s

St James

Farm

Churchill

Woods

West Chicago

Prairie

Blackwell

Lincoln Marsh

Herrick Lake Danada

Big Woods



83

99 98 97 96 95 94 93 92 91

908988878685848281

80 79 78 77 76 75 74 73 72 71

70696867666564636261

60 59 58 57 56 55 54 53 52 51

50494847464544434241

40 39 38 37 34 33 32 31

30292827

35

25

36

24232221

20 19 18 17 16 15

26

14 13 12 11

104 98765321

100



Anna

Oblonsky

Vronsky

Dolly

Karenin Levin

Kitty

sibling frie
nd

spouse
paramour

spouse

ex

spouse

s
ib

lin
g

ModemISP Firewall Router

Server Printer Desktop DesktopDesktop

WiFi

Switch

H O H
CO O

C C

HH H H

H C

H

H

H

Water Carbon dioxide Propane



▶ Graph

▶ Vertex (compare node)

▶ Edge (compare link)

▶ Incident

▶ Adjacent

▶ Degree

▶ Complete

▶ Dense

▶ Sparse

▶ Directed graph

▶ Undirected graph

▶ Parallel edge

▶ Self loop

▶ Simple graph

▶ Weighted graph



Adjectives
Trivial Having only one vertex and no edges.
Simple Having no repeated vertices (except,

possibly, the initial and terminal).

Walk

Closed walk Path

Circuit

Cycle

Simple path

Closed Having the same vertex as initial and
terminal.

Nouns
Walk An alternating sequence of vertices and

edges, each edge coming between its
end points.

Path A walk with no repeated edge (repeated
vertices are ok).

Circuit A closed path (no repeated edges, initial
and terminal the same).

Cycle A simple circuit (no repeated edges or
vertices, except the initial and terminal,
which are the same).



numEdges: int
adjSets: Set<Integer>[]

AdjListGraph
edges: boolean[][]
numEdges: int

AdjMatrixGraph
connect(u:int, v:int)

getGraph(): AdjMatrixGraph

ALGBuilder

connect(u:int, v:int)

getGraph(): AdjMatrixGraph

AMGBuilder

numVertices() : int
numEdges() : int
adjacents(v:int) : Iterable<Integer>
adjacent(u:int, v:int)

<<interface>>
Graph



Adjacency matrix Adjacency list

Space Θ(V 2) Θ(V + E )

adjacent(u, v) Θ(1) Θ(deg(u)) (expected case)

getAdjacents(u) Θ(V ) Θ(deg(u))



Coming up:

Do heaps and priority queue project (Fri, Oct 4)

Due Thurs, Oct 3:
Read Sections 4.(1-3) This is a big chunk—spread it out!
Do Exercises 4.1 and 4.19
Take “graph concepts, implementation, and traversal” quiz


