
Chapter 4, Graphs:

▶ (Finish priority queues and heaps. . . (Today))

▶ Concepts and implementation (Today)

▶ Traversal (Wednesday and in lab Thursday)

▶ Minimum spanning trees (Friday and next week Monday)

▶ Single-source shortest paths (next week Wednesday and Friday)

Today:

▶ Applications of graphs

▶ Vocabulary, taxonomy, and theory

▶ Representing and implementing graphs
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▶ Graph

▶ Vertex (compare node)

▶ Edge (compare link)

▶ Incident

▶ Adjacent

▶ Degree

▶ Complete

▶ Dense

▶ Sparse

▶ Directed graph

▶ Undirected graph

▶ Parallel edge

▶ Self loop

▶ Simple graph

▶ Weighted graph



Adjectives
Trivial Having only one vertex and no edges.
Simple Having no repeated vertices (except,

possibly, the initial and terminal).

Walk

Closed walk Path

Circuit

Cycle

Simple path

Closed Having the same vertex as initial and
terminal.

Nouns
Walk An alternating sequence of vertices and

edges, each edge coming between its
end points.

Path A walk with no repeated edge (repeated
vertices are ok).

Circuit A closed path (no repeated edges, initial
and terminal the same).

Cycle A simple circuit (no repeated edges or
vertices, except the initial and terminal,
which are the same).



numEdges: int
adjSets: Set<Integer>[]

AdjListGraph
edges: boolean[][]
numEdges: int

AdjMatrixGraph
connect(u:int, v:int)

getGraph(): AdjMatrixGraph

ALGBuilder

connect(u:int, v:int)

getGraph(): AdjMatrixGraph

AMGBuilder

numVertices() : int
numEdges() : int
adjacents(v:int) : Iterable<Integer>
adjacent(u:int, v:int)

<<interface>>
Graph



Adjacency matrix Adjacency list

Space Θ(V 2) Θ(V + E )

adjacent(u, v) Θ(1) Θ(deg(u)) (expected case)

getAdjacents(u) Θ(V ) Θ(deg(u))



Coming up:

Do heaps and priority queue project (Fri, Oct 4)

Due Thurs, Oct 3:
Read Sections 4.(1-3) This is a big chunk—spread it out!
Do Exercises 4.1 and 4.19
Take “graph concepts, implementation, and traversal” quiz


