
Welcome

CSCI 345
Data Structures and Algorithms

Wheaton College
Thomas VanDrunen

Fall 2024



1. The correctness of an algorithm can be verified formally using loop invariants and
other proof techniques and empirically using unit tests.

2. The efficiency of an algorithm can be measured formally using algorithmic
analysis, big-oh categories, etc, and empirically by running experiments.

3. Abstract data types, especially list, stack, queue, set, bag, and map, are specified
by how they are used; data structures, such as arrays, linked lists, binary trees,
and hash tables, are implementation strategies, each with trade-offs.

4. Searching in an unordered data structure such as a map can be done in
logarithmic time using a balanced binary search tree .

5. Searching in an unordered data structure can be done in constant time using a
hash table.

6. Problems with overlapping subproblems and optimal substructure can be solved
efficiently using dynamic programming.



1. The correctness of an algorithm can be verified formally using loop invariants and
other proof techniques and empirically using unit tests.

2. The efficiency of an algorithm can be measured formally using algorithmic analysis,
big-oh categories, etc, and empirically by running experiments.

formally empirically

Correctness, verified by invariants and by unit tests
and correctness proofs

Efficiency, measured by big-oh categories and by experiments
and related notation



3. Abstract data types, especially list, stack, queue, set, bag, and map, are specified by
how they are used; data structures, such as arrays, linked lists, binary trees, and hash
tables, are implementation strategies, each with trade-offs.

ADTs Data structures

List Array
Set Linked list and other linked structures
Map Binary search tree
Stack Hash table
Queue
Bag



The quest for the more efficient map

4. Searching in an unordered data structure such as a map can be done in logarithmic
time using a balanced binary search tree .

5. Searching in an unordered data structure can be done in constant time using a hash
table.



6. Problems with overlapping subproblems and optimal substructure can be solved
efficiently using dynamic programming.

Other smaller topics: Sorting algorithms, graph algorithms, string algorithms, regular
expressions, . . .



How to succeed in CSCI 345:

▶ Know your DMFP and Programming II stuff.

▶ Read the textbook.

▶ Do the practice problems.

▶ Figure out the quiz questions.

▶ Learn in the labs.

▶ Do the projects on time.

▶ Use the projects to understand the data structures and algorithms—don’t just
fiddle with the code until the tests pass.

▶ Keep electronic devices away during class.



Coming up:

Due Today, Wednesday, Aug 28 (end of day)
Read Section 1.1
Take quiz (course introduction)

Due Tues, Sept 3 (end of day)
Finish “Pretest” Project (if not finished during lab Aug 29)
Read Section 1.2 (long section—spread it out)
Do Exercises 1.6
Take quiz (algorithms and correctness)


