Chapter 5, Dynamic Programming:

- Introduction and sample problems (last week Friday)
- Principles of DP (Monday)
- ► DP algorithms, solutions to sample problems (Wednesday)

▲ロト ▲圖ト ▲画ト ▲画ト 三回 - のへで

- Optimal BSTs (Today)
- Review for Test 2 (next week Monday)
- No class (next week Wednesday)
- Test 2 (next week Thursday, in lab)

Today:

- Finishing matrix multiplication
- The optimal BST definition
- The optimal-BST-building problem
- The dynamic programming solution

Why this problem?

- It connects dynamic programming with the quest for a better map.
- Its hardness is in the right places (building the table—hard; reconstructing solution—trivial).
- It is a representative of a bigger concept: What if we had more information—how would that change the problem.

▲ロト ▲圖ト ▲画ト ▲画ト 三回 - のへで

Game plan:

- Understand the problem itself
- Understand the recursive characterization
- Understand the table-building algorithm

The optimal binary search tree problem:

- Assume we know all the keys $k_0, k_1, \ldots, k_{n-1}$ ahead of time.
- ► Assume further that we know the probabilities p₀, p₁, ... p_{n-1} of each key's lookup.
- ► Assume even further that we know the "miss probabilities" q₀, q₁, ... q_n where q_i is the probability that an *extraneous key* falling between k_{i-1} and k_i will be looked up.
- We want to build a tree to minimize the *expected cost* of a look up, which is the *total weighted depth* of the tree:

$$\sum_{i=0}^{n-1} p_i \ depth(k_i) + \sum_{i=0}^n q_i \ depth(m_i)$$

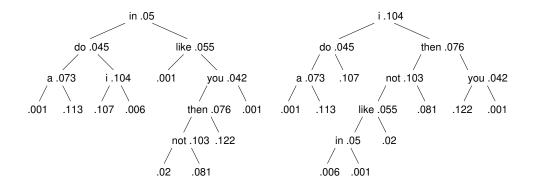
where depth(x) is the number of nodes to be inspected on the route from the root to node x, k_i stands for the node containing key k_i [notational abuse], and m_i is the dummy node between keys k_{i-1} and and k_i .

• Note that the rules of probability require $\sum_{i=0}^{n-1} p_i + \sum_{i=0}^{n} q_i = 1$

i	84	eat	24	ham	10	fox	7	rain	4
not	83	will	21	there	9	on	7	see	4
them	61	sam	19	train	9	tree	6	try	4
a	59	with	19	anywhere	8	say	5	boat	3
like	44	am	16	house	8	so	5	that	3
in	40	could	14	mouse	8	be	4	are	2
do	36	here	11	or	8	goat	4	good	2
you	34	the	11	box	7	let	4	thank	2
would	26	eggs	10	car	7	may	4	they	2
and	24	green	10	dark	7	me	4	if	1

```
Key or miss event combined frequency
                                                                0
                                                                59
                                                   а
{ am and anywhere are be boat box car could dark }
                                                                92
                                                                36
                                                  do
   { eat eggs fox goat good green ham here house }
                                                                86
                                                                84
                                                   i
                                           { if let }
                                                                5
                                                                40
                                                  in
                                                   { }
                                                                0
                                                like
                                                                44
                                     { may me mouse }
                                                                16
                                                                83
                                                 not
     { on or rain same say see so thank that the }
                                                                65
                                                                61
                                                then
     { there they train tree try will with would }
                                                                99
                                                                34
                                                 you
                                                                0
```

0 1 2 3 4 5 6 7 k; do i like then а in not you .045 .104 .05 .055 .103 .073 .076 .042 pi .113 .107 .006 .001 .02 .081 .122 .001 q_i .001



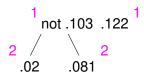
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 の々で

 $1 \cdot .02 + 1 \cdot .081$ = .101

1 1 .02 .081

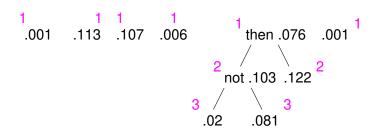
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - つへで

 $2 \cdot .02 + 2 \cdot .081$ +1 \cdot .103 + 1 \cdot .122 = .427

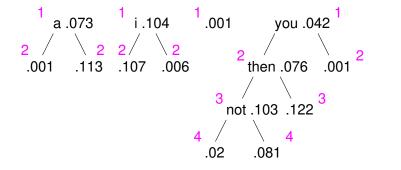


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

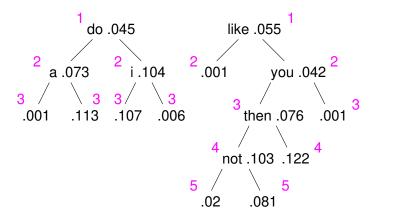
$$\begin{array}{l} 3 \cdot .02 + 3 \cdot .081 \\ + 2 \cdot .103 + 2 \cdot .122 \\ + 1 \cdot .001 + 1 \cdot .133 + 1 \cdot .107 + 1 \cdot .006 + 1 \cdot .076 + 1 \cdot .001 \\ = 1.057 \end{array}$$



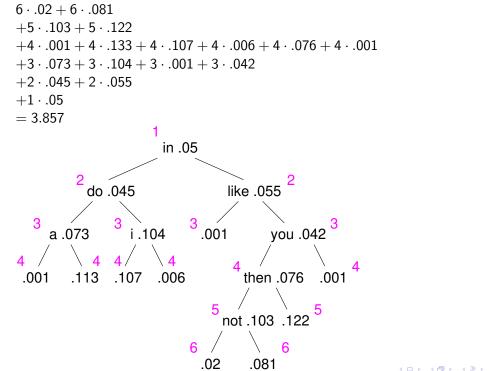
$$\begin{array}{l} 4 \cdot .02 + 4 \cdot .081 \\ + 3 \cdot .103 + 3 \cdot .122 \\ + 2 \cdot .001 + 2 \cdot .133 + 2 \cdot .107 + 2 \cdot .006 + 2 \cdot .076 + 2 \cdot .001 \\ + 1 \cdot .073 + 1 \cdot .104 + 1 \cdot .001 + 1 \cdot .042 \\ = 1.907 \end{array}$$



 $\begin{array}{l} 5 \cdot .02 + 5 \cdot .081 \\ + 4 \cdot .103 + 4 \cdot .122 \\ + 3 \cdot .001 + 3 \cdot .133 + 3 \cdot .107 + 3 \cdot .006 + 3 \cdot .076 + 3 \cdot .001 \\ + 2 \cdot .073 + 2 \cdot .104 + 2 \cdot .001 + 2 \cdot .042 \\ + 1 \cdot .045 + 1 \cdot .055 \\ = 2.857 \end{array}$



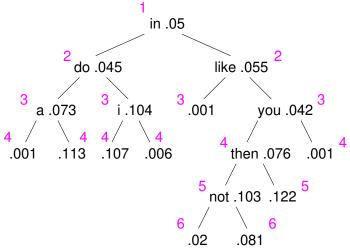
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 の々で



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 の々で

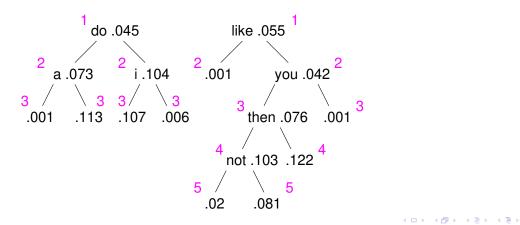
 $4 \cdot .001 + 3 \cdot .073 + 4 \cdot .133 + 2 \cdot .045 + 4 \cdot .107 + 3 \cdot .104 + 4 \cdot .006 + 1 \cdot .05$

 $+3 \cdot .001 + 2 \cdot .055 + 6 \cdot .02 + 6 \cdot .081 + 4 \cdot .076 + 5 \cdot .122 + 3 \cdot .042 + 4 \cdot .001 = 3.857$



 $\begin{array}{l} 3 \cdot .001 + 2 \cdot .073 + 3 \cdot .133 + 1 \cdot .045 + 3 \cdot .107 + 2 \cdot .104 + 3 \cdot .006 \\ + .001 + .073 + .133 + .045 + .107 + .104 + .006 \\ + .05 \\ + 2 \cdot .001 + 1 \cdot .055 + 5 \cdot .02 + 5 \cdot .081 + 3 \cdot .076 + 4 \cdot .122 + 2 \cdot .042 + 3 \cdot .001 \\ + .001 + .055 + .02 + .081 + .076 + .122 + .042 + .001 \end{array}$

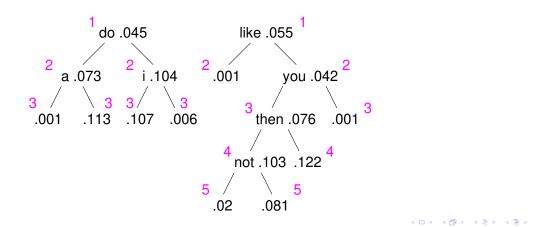
= 3.857



æ

$$\begin{array}{l} 3\cdot.001+2\cdot.073+3\cdot.133+1\cdot.045+3\cdot.107+2\cdot.104+3\cdot.006\\ +2\cdot.001+1\cdot.055+5\cdot.02+5\cdot.081+3\cdot.076+4\cdot.122+2\cdot.042+3\cdot.001\\ +.001+.073+.133+.045+.107+.104+.006\\ +.05\\ +.001+.055+.02+.081+.076+.122+.042+.001\\ = 3.857\end{array}$$

in .05



æ

Total weighted depth for a given tree (expected lookup cost):

$$\underbrace{\sum_{i=0}^{n-1} p_i depth(k_i)}_{\text{keys}} + \underbrace{\sum_{i=0}^{n} q_i \ depth(m_i)}_{\text{misses}}$$

Let $depth_{k_a}(k_i)$ be the depth of the node with k_i in the subtree rooted at node with k_1 . For example, if k_r is the root of the entire tree and k_a is a child of the root, then

$$depth_{k_r}(k_i) = depth_{k_a}(k_i) + 1$$

Then we can rewrite the total weighted depth as

$$\sum_{i=0}^{r-1} p_i \ depth_{k_r}(k_i) + \sum_{i=0}^{r} q_i \ depth_{k_r}(m_i) + p_r + \sum_{i=r+1}^{n-1} p_i \ depth_{k_r}(k_i) + \sum_{i=r+1}^{n} q_i \ depth_{k_r}(m_i)$$
left subtree total weighted depth (absolute)

▲ロト ▲圖ト ▲画ト ▲画ト 三回 - のへで

Again, let k_r be the root of the entire tree and k_a and k_b be the root's children. Then

$$\sum_{i=0}^{r-1} p_i(depth_{k_a}(k_i)+1) + \sum_{i=0}^{r} q_i(depth_{k_a}(m_i)+1) + p_r + \sum_{i=r+1}^{n-1} p_i(depth_{k_b}(k_i)+1) + \sum_{i=r+1}^{n} q_i(depth_{k_r}(m_i)+1) + p_r + \sum_{i=r+1}^{n} p_i(depth_{k_b}(k_i)+1) + \sum_{i=r+1}^{n} q_i(depth_{k_r}(m_i)+1) + p_r + \sum_{i=r+1}^{n} p_i(depth_{k_b}(k_i)+1) + \sum_{i=r+1}^{n} q_i(depth_{k_r}(m_i)+1) + p_r + \sum_{i=r+1}^{n} q_i(dept$$

left subtree total weighted depth (absolute)

right subtree total weighted depth (absolute)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 -

Convert to "relative depth":

$$\sum_{i=0}^{n-1} p_i + \sum_{i=0}^{n} q_i + \sum_{i=0}^{r-1} p_i \ depth_{k_a}(k_i) + \sum_{i=0}^{r} q_i \ depth_{k_a}(m_i) + \sum_{i=r+1}^{n-1} p_i \ depth_{k_b}(k_i) + \sum_{i=r+1}^{n} q_i \ depth_{k_r}(m_i)$$
total probability
$$\underbrace{\sum_{i=0}^{n-1} p_i \ depth_{k_b}(k_i) + \sum_{i=r+1}^{n} q_i \ depth_{k_r}(m_i)}_{\text{left subtree total weighted depth (relative)}}$$

Let TWD(k) be the total weighted depth of the tree rooted at k (relative to k) and TP(k) be the total probability of the tree rooted at k. Then

$$TWD(k_r) = TP(k_r) + TWD(k_a) + TWD(k_b)$$

Let P[i][j] be the total probabilities of the keys and misses in the range [i, j]:

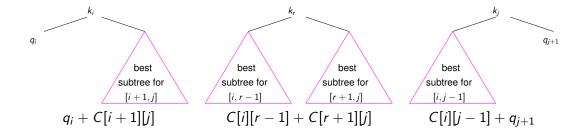
$$P[i][j] = \sum_{k=i}^{j} p_k + \sum_{k=i}^{j+1} q_k$$

Let C[i][j] be the least total weighted depth of any BST composed from keys in the range [i, j]. The recursive characterization is

$$C[i][j] = \begin{cases} 2q_i + p_i + 2q_{i+1} & \text{if } i = j \\ \\ P[i][j] + \min \begin{cases} q_i + C[i+1][j] \\ C[i][r-1] + C[r+1][j] & \text{for } r \in (i,j) \\ C[i][j-1] + q_{j+1} \end{cases} & \text{if } i < j \end{cases}$$

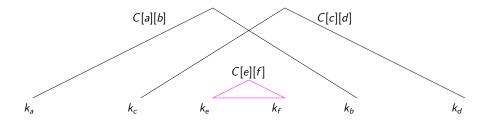
| ◆ □ ▶ | ◆ □ ▶ | ◆ □ ▶ | ◆ □ ▶ | ◆ □ ▶ | ◆ □ ▶ | ◆ □ ▶ | ◆

$$C[i][j] = \begin{cases} 2q_i + p_i + 2q_{i+1} & \text{if } i = j \\ \\ P[i][j] + \min \begin{cases} q_i + C[i+1][j] \\ C[i][r-1] + C[r+1][j] & \text{for } r \in (i,j) \\ C[i][j-1] + q_{j+1} \end{cases} & \text{if } i < j \end{cases}$$



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

$$C[i][j] = \begin{cases} 2q_i + p_i + 2q_{i+1} & \text{if } i = j \\ \\ P[i][j] + \min \begin{cases} q_i + C[i+1][j] \\ C[i][r-1] + C[r+1][j] \text{ for } r \in (i,j) \\ C[i][j-1] + q_{j+1} \end{cases} & \text{if } i < j \end{cases}$$

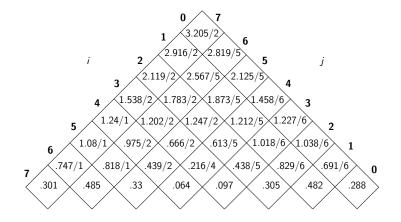


$$C[i][j] = \begin{cases} 2q_i + p_i + 2q_{i+1} & \text{if } i = j \\ \\ P[i][j] + \min \begin{cases} q_i + C[i+1][j] \\ C[i][r-1] + C[r+1][j] \text{ for } r \in (i,j) \\ C[i][j-1] + q_{j+1} \end{cases} & \text{if } i < j \end{cases}$$

$$P[i][j] = \begin{cases} q_i + p_i + q_{i+1} & \text{if } i = j \\ \\ q_i + p_i + P[i+1][j] \\ \text{or } P[i][r-1] + p_r + P[r+1][j] \text{ for } r \in (i,j) \\ \\ \text{or } P[i][j-1] + p_j + q_{j+1} \end{cases} \text{ if } i < j$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

0 2 3 5 7 1 4 6 k; do i in like then а not you .073 .045 .104 .05 .055 .103 .076 .042 pi .001 .113 .107 .006 .001 .02 .081 .122 .001 q_i



```
# The cost of making key j the root
current_subtree_cost = total_weighted_depths[i][j-1] + miss_probs[j+1]
# If its cost is better than best-so-far, it's the new best-so-far
if current_subtree_cost < least_subtree_cost :
least_subtree_cost = current_subtree_cost
best_root = j
# Record the best option and corresponding cost in the tables
total_weighted_depths[i][j] = total_probs[i][j] + least_subtree_cost
decisions[i][j] = best_root
```

(日) (部) (注) (注) (注)

From its similarity to the algorithm for optimal matrix multiplication, we recognize the running time for building the tables as $\Theta(n^3)$. See Exercise 6.47 for details.

The value C[0][n - 1] in total_weighted_depths[0][n-1] gives us the cost of the best tree for the given keys with their probabilities. As with other dynamic programming problems, a more useful result is the tree itself. Exercise 6.48 asks you to write a function that reconstructs the optimal binary search tree using a populated decision table, but for Project 6.2 we have an alternate strategy. Instead of reconstructing the tree after building the table, we build the actual optimal subtrees along with the table. Instead of a table of decisions as in the algorithm above, we maintain a table such that in position (i, j) we store the root of the best subtree for keys k_i through k_i .

Coming up:

Catch up on projects... (Recommended: Do LL RB project for your own practice) Do Optimal BST project (Due Mon, Apr 14)

▲ロト ▲圖ト ▲画ト ▲画ト 三回 - のへで

(See Canvas for practice problems for Test 2)

Due **Fri, Apr 4** (end of day) Read Section 6.5 (No quiz on Section 6.5)

Due Fri, Apr 11 (end of day) Read Sections 7.(1 & 2) Take quiz