
Chapter 4, Graphs:

▶ Concepts and implementation (Friday, Feb 14)

▶ Traversal (Wednesday, Feb 19 (plus lab))

▶ Minimum spanning trees (Friday, Feb 21, and Monday, Feb 24)

▶ Single-source shortest paths (Wednesday, Feb 26, and Friday, Feb 28)

▶ (Test 1 Wednesday, Mar 5)

“Today” (Friday and Monday):

▶ Finish graph traversal (analysis)

▶ MST problem definition

▶ Brute-force solution

▶ General structure of good solutions

▶ Kruskal’s algorithm, plus proof and analysis

▶ Prim’s algorithm, plus proof and analysis

▶ Performance comparison



Minimum spanning tree problem

Given a weighted, undirected, connected graph, find minimum spanning tree:

Tree: A (sub)graph with no cycles. [We represent the tree a a set of edges.]

Spanning: All vertices in the original graph are included in the tree.

Minimum: For all spanning trees, this has least total weight.



0
1

2

3

5

6

7

8

4

18
17

23

24
16

6 6

12
8

8

3

6

3

12

7

23

12

9

12

4



General strategy for MST (both algorithms):

▶ Maintain a set of edges A that is a subset of a MST

▶ At each step, add one edge to A until it’s a MST

Invariant (General MST main loop)

There exists T ⊆ E such that T is a minimum spanning tree of G and A ⊆ T .

General algorithm outline:

A = ∅
While A isn’t a MST

add an edge to A that maintains the invariant

Insight 1: A implicitly partitions vertices into connected components. The lightest
edge that connects two components is safe.



Lemma (Safe edges in Kruskal’s algorithm.)

If G = (V ,E ) is a graph, A is a subset of a minimum spanning tree for G , and
(u, v) is the lightest edge connecting any distinct connected components of A,
then (u, v) is a safe edge for A, that is, A ∪ {(u, v)} is a subset of a minimum
spanning tree.



Proof. Suppose everything in the hypothesis, in particular that A is a subset of
some minimum spanning tree T and that u and v are in distinct connected
components of A, call them Au and Av . Let wT be the total weight of T , that is,
the sum of the weights of all the edges of T . We want to prove that adding (u, v)
to A makes something that is still a subset of some minimum spanning tree.

If (u, v) ∈ T , then we’re done. Suppose, then, that T does not contain (u, v).
Since T is a spanning tree, it means that u and v are connected in T . Pick the
lightest edge on the path from u to v that is not in A, call it (x , y). Essentially
(x , y) is an edge that was picked instead of (u, v) that contributed to connecting
Au and Av .



Snip out (x , y). This would disconnect T , that is, the graph T − {(x , y)} is not
a tree, but rather contains two connected components, one with u in it and the
other with v in it. Now splice in (u, v). That will reconnect u and v and make it
into a tree again. Formally we’ve made a new spanning tree
(T − {(x , y)}) ∪ {(u, v)}.

The hypothesis says that (u, v) was the lightest edge connecting distinct
components of A. That means w(u, v) ≤ w(x , y). That in turn means that the
total weight of the new spanning tree is also just as good, if not better, than the
old one: wT−{(x ,y)})∪{(u,v)} ≤ wT . Since it ties or beats a (supposed) minimum
spanning tree, (T − {(x , y)}) ∪ {(u, v)} must be a minimum spanning tree.
Therefore (u, v) is safe. □



Invariant (General MST main loop)

There exists T ⊆ E such that T is a minimum spanning tree of G and A ⊆ T .

Insight 1: A implicitly partitions vertices int connected components. The lightest edge
that connects two components is safe.

Invariant (Prim’s algorithm main loop)

A is a (single) tree.

Insight 2: The lightest edge that connects a new vertex to A is safe.



Kruskal Prim
Unoptimized Optimized Unoptimized Optimized

Sparse Adjacency list 31579 28841 72364 58089
Adjacency matrix 49128 35493 67887 49537

Medium Adjacency list 147527 54877 180407 113555
Adjacency matrix 127485 59821 146358 75906

Dense Adjacency list 136762 69867 191617 123762
Adjacency matrix 162468 78154 130984 72245



Minimum Spanning Tree Problem Single-Source Shortest Paths Problem

Given a weighted, undirected graph,
find the tree with least-total weight that
connects all the vertices, if one exists.

Given a weighted directed graph and a
source vertex, find the tree comprising the
shortest paths from that source to all other
reachable vertices.

▶ Both are defined for weighted graphs

▶ Both produce trees as a result

▶ Both minmize by weight

▶ For each we have two algorithms

Input is only a graph Input is a graph and a starting point
Problem usually is described on an undi-
rected graph

Problem usually is described on a directed
graph

Goal is to minimize total weight Goal is to minimize weight on each path
There is no clear winner between the
algorithms

One algorithm is clearly more efficient



Coming up:
Catch up on other projects. . .
Do MST project (due Wed, Feb 26)

Due Mon, Feb 24
Read Section 4.4
Do Exercises 4.(40, 42, 43)
(See comments on Canvas)
Take MST quiz

Due Fri, Feb 28 (end of day)
Read Section 4.5
Do Exercises 4.(55–57)
Take SSSP quiz


