
Chapter 4, Graphs:

I Concepts and implementation (last week Monday)

I Traversal (last week Wednesday (plus lab last week Thursday))

I Minimum spanning trees (last week Friday and this past Monday)

I Single-source shortest paths (this week Wednesday and Friday)

I Review for test (next week Monday)

Wednesday and Friday:

I (MST loose ends)

I The SSSP problem

I General concepts for SSSP algorithms

I The most unlucky graph for SSSP

I The Bellman-Ford algorithm plus analysis

I Dijkstra’s algorithm plus analysis

Minimum Spanning Tree Problem Single-Source Shortest Paths Problem

Given a weighted, undirected graph,
find the tree with least-total weight that
connects all the vertices, if one exists.

Given a weighted directed graph and a
source vertex, find the tree comprising the
shortest paths from that source to all other
reachable vertices.

I Both are defined for weighted graphs

I Both produce trees as a result

I Both minmize by weight

I For each we have two algorithms

Input is only a graph Input is a graph and a starting point
Problem usually is described on an undi-
rected graph

Problem usually is described on a directed
graph

Goal is to minimize total weight Goal is to minimize weight on each path
There is no clear winner between the
algorithms

One algorithm is clearly more efficient

0

1 2

3 4

5
6

7
8

9

10

11

12

5

15
6

6

3 1
5

89

12

8

3 6

2

5

9

2

4
9

1

1
6

13

0

1

2

3

1

1

1

4

1

10

9

8

Let X be the set of vertices whose distance bounds are correct, that is, v ∈ X if
distances[v] is the total weight of the shortest path from s to v . For a single-source
shortest path algorithm to be correct, all vertices reachable from s are in set X at
termination, and if all vertices are reachable, this implies X = V . Let Y be the set of
vertices that have been removed from the priority queue. Our intent is that Y ⊆ X : all
vertices have correct distance bound at the time they are removed from the priority
queue, though at any point there may also be some correct ones still in the priority
queue. We claim

Invariant (Main loop of Dijkstra’s algorithm)

Let X and Y be as defined above.

(a) Y ⊆ X .

(b) If v is the vertex in the priority queue with least distance bound, then v ∈ X .

(c) |Y | is the number of iterations completed.

Coming up:

Do MST project (due Wednesday, Oct 9)
Do SSSP project (due Friday, Oct 18)

Due Fri, Oct 11 (end of day)
Read Section 4.5
Do Exercises 4.(50, 51, 59)
Take SSSP quiz

