Chapter 7, Hash tables:

General introduction; separate chaining (week-before Wednesday)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

- Open addressing (week-before Friday)
- Hash functions (last week Monday)
- Perfect hashing (Monday)
- Hash table performance (Today)
- (Start Ch 8, Strings, Thursday (in lab) and Friday)

Today:

- Elements of hashtable performance
- Separate chaining performance
- Open addressing performance

End-of-semester important dates

- Thurs, Dec 5: Last "normal" lab
- Mon, Dec 9: Last project assigned
- Tues, Dec 10: Last "normal" running of project grading script
- Wed, Dec 11: Test 3 & 4 Review sheet distributed, Test 4 practice problems made available.
- Thurs, Dec 12: Review lab (pick practice problems for Test 4)
- Fri, Dec 13, AM: "Two-minute warning" running of project grading script (Canvas gradebook will not be updated—see project report in your turn-in file) Note that Fri, Dec 13 is the Last Day of Classes.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○○

- Fri, Dec 13, midnight: Official project deadline
- Sat, Dec 14, when I wake up: Permissions to turn-in folders turned off
- Mon, Dec 16: Project grading script run for final/semester grades
- Wed, Dec 18, 10:30am-12:30pm: Tests 3 and 4 (in lab)

	Find	Insert	Delete
Unsorted array	$\Theta(n)$	$\Theta(1) \ [\Theta(n)]$	$\Theta(n)$
Sorted array	$\Theta(\lg n)$	$\Theta(n)$	$\Theta(n)$
Linked list	$\Theta(n)$	$\Theta(1)$	$\Theta(1)$
Balanced BST	$\Theta(\lg n)$	$\Theta(1) \ [\Theta(\lg n)]$	$\Theta(1) \ [\Theta(\lg n)$
What we want	$\Theta(1)$	$\Theta(1)$	$\Theta(1)$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Find	Search the data structure for a given key
Insert	Add a new key to the data structure
Delete	Get rid of a key and fix up the data structure

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

containsKey() Find

get() Find

put() Find + insert

remove() Find + delete

$$\begin{array}{cccc} O(1) & c_{0} \\ O(1) & c_{0} \\ O(1) & c_{0} \\ \vdots \\ O(1) & c_{0} \end{array} \end{array} \right\} \begin{array}{c} T(n) &= (n-1)c_{0} + c_{1} + c_{2}n \\ &= (c_{0} + c_{2})n + c_{1} - c_{0} \\ &= \Theta(n) \\ \vdots \\ O(1) & c_{0} \end{array} \right\}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のへで

$$\frac{(n+1) + n + (n-1) + \dots + 3 + 2 + 1 + \dots + 1}{m}$$

$$= \frac{m+n+(n-1) + \dots + 2 + 1}{m}$$
the initial *m* accounting for the last probe in each case
$$= \frac{m}{m} + \frac{(n+1) \cdot \frac{n}{2}}{m}$$
as an arithmetic series
$$\approx 1 + \frac{(n+1) \cdot \frac{n}{2}}{2 \cdot n}$$
since *m* is about $2 \cdot n$

$$= 1 + \frac{n+1}{4}$$
by cancellation

◆□▶ ◆舂▶ ◆吾▶ ◆吾▶ 吾 ∽��?

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□▶ ▲□▶

What is the probability that a miss k requires at least i probes?

Conditional probability

 $P(X \mid Y)$: What is the probability of event X in light of event Y?

$$P(X \wedge Y) = P(X) \cdot P(X \mid Y)$$

 $P(X_0 \wedge X_1 \wedge \cdots \wedge X_{N-1}) = P(X_0) \cdot P(X_1 \mid X_0) \cdot P(X_1 \mid X_0 \wedge X_1) \cdots P(X_{N-1} \mid X_0 \wedge \cdots \wedge X_{N-2})$

▲ロト ▲圖ト ▲画ト ▲画ト 三回 - のへで

The probability that a miss requires at least *i* probes:

$$\frac{n}{m} \cdot \frac{n-1}{m-1} \cdots \frac{n-i+2}{m-i+2}$$

$$\leq \left(\frac{n}{m}\right)^{i-1} \quad \text{since } n < m$$

$$\leq \alpha^{i-1} \quad \text{by substitution}$$

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目 のへで

$$\sum_{i=1}^{m} i \cdot P\begin{pmatrix} \text{it takes} \\ i \text{ probes} \end{pmatrix} = \sum_{i=1}^{m} i \cdot \left(P\begin{pmatrix} \text{it takes} \\ a \text{t least } i \end{pmatrix} - P\begin{pmatrix} \text{it takes at} \\ \text{least } i+1 \\ \text{probes} \end{pmatrix} \right)$$

$$= \sum_{i=1}^{m} P\begin{pmatrix} \text{it takes} \\ a \text{t least } i \\ \text{probes} \end{pmatrix}$$
by telescoping
$$\leq \sum_{i=1}^{m} \alpha^{i-1}$$
by the previous result
$$\leq \sum_{i=1}^{\infty} \alpha^{i-1}$$
since $m < \infty$

$$= \sum_{i=0}^{\infty} \alpha^{i}$$
by a change of variable
$$= \frac{1}{1-\alpha}$$
by geometric series

Is the following assumption true for linear probing?

$$P(T[h(k)+1]
eq \texttt{null} \mid T[h(k)]
eq \texttt{null}) = rac{n-1}{m-1}$$

In general, is the following assumption true for a probing strategy?

$$P(T[\sigma(k,1)] \neq \texttt{null} \mid T[\sigma(k,0)] \neq \texttt{null}) = \frac{n-1}{m-1}$$

What is the difference between

Each array index is equally likely to be vs the hash of a given key.

Each array position is equally likely to be occupied.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 -

Linear probing is biased towards clustering:

r			
x	Number of buckets with exactly x previous buckets filled	Number of filled buckets with exactly x previous buckets filled	Probability that a bucket is filled if exactly <i>x</i> previous buckets are filled
0	97	48	.495
1	48	22	.458
2	22	12	.545
3	12	7	.583
4	7	4	.571
5	4	3	.75
6	3	2	.667
7	2	2	1
8	2	0	0

Expected number of probes for a miss in a hashtable using linear probing (from Knuth):

$$\frac{1}{2} \cdot \left(1 + \frac{1}{(1-\alpha)^2}\right)$$

▲□▶ ▲□▶ ▲三≯ ▲三≯ ▲□▶

After n calls to put() with unique keys, no removals, consider **average chain length** over all keys (low is good), **percent of keys that are in their ideal location** (high is good), and **length of the longest chain** (low is good)

	п	Line	Linear probing		Quadr	Quadratic probing			Double hashing		
Surnames	1000	2.092	64.7%	31	1.421	75.8%	9	2.327	65.2%	31	
Mountains	1360	1.568	73.8%	17	1.729	65.8%	11	1.770	73.4%	16	
Mountains (height)	1360	1.932	75.1%	99	1.882	68.9%	18	1.830	72.4%	13	
Chemicals	663	1.517	75.0%	16	1.729	65.5%	10	1.701	75.5%	9	
Chemicals (symbol)	663	1.885	71.0%	20	1.837	66.4%	13	1.798	72.7%	12	
Books	718	1.419	76.7%	8	1.659	70.0%	11	1.656	75.8%	8	
Books (ISBN)	718	1.542	74.4%	21	1.670	67.8%	15	1.724	74.5%	10	
Random strings	5000	1.544	77.6%	49	1.735	69.9%	37	1.598	78.1%	13	
Random strings	5000	1.531	77.1%	35	1.729	69.8%	28	1.593	77.9%	12	
Random strings	5000	1.643	77.5%	76	1.754	68.6%	29	1.590	78.1%	13	

Coming up:

Do **Open addressing hashtable** project (due this past Mon, Dec 2) Do **Perfect hashing** project (due mon, Dec 9)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 -

Due **Wed, Dec 4** (end of day) Re-read the last part of Section 7.3 Take quiz

Due **Fri, Dec 6** (end of day) Read Section 8.1 Do Exercises 8.(4 & 5) Take quiz

Due **Mon, Dec 9** (end of day) Read Section 8.2 (No quiz or practice problems)