Chapter 5, Binary search trees:

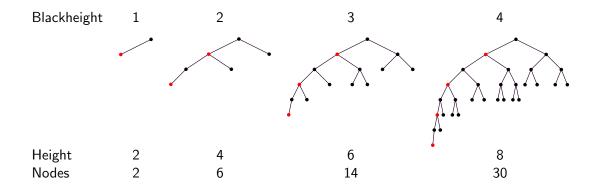
 Binary search trees; the balanced BST problem (fall-break eve; finished week-before Friday)

▲ロト ▲圖ト ▲画ト ▲画ト 三回 - のへで

- AVL trees (week-before Friday and last week Monday)
- Traditional red-black trees (last week Wednesday)
- Left-leaning red-black trees (last week Friday, finish Today)
- "Wrap-up" BST (next week Monday)
- Begin dynamic programming (Thursday)
- Test 2 Wednesday, Apr 5

Today:

- Balanced tree comparisons
- Survey of B-trees



(Traditional) red-black trees

 $h \leq 1.44 \lg n$

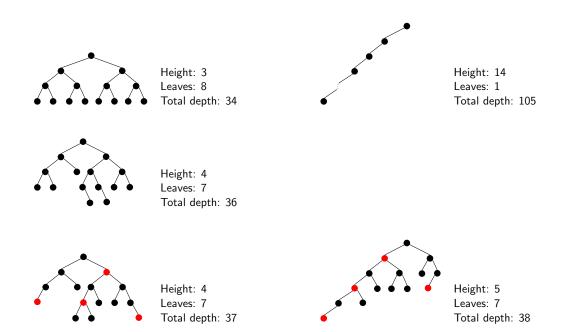
The difference between the longest routes to leaves in the two subtrees is no greater than 1.

Stronger constraint, more aggressive rebalancing, more balanced tree, more work spent rebalancing. $h \leq 2 \lg(n+2) - 2$

The longest route to any leaf is no greater than twice the shortest route to any leaf.

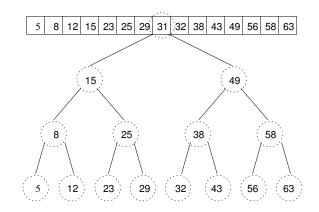
Looser constraint, less aggressive rebalancing, less balanced tree, less work spent rebalancing.

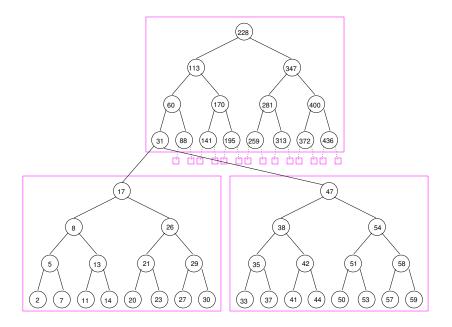
▲ロト ▲圖ト ▲画ト ▲画ト 三回 - のへで

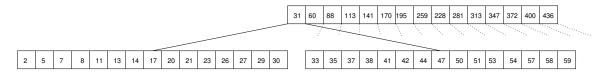


◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

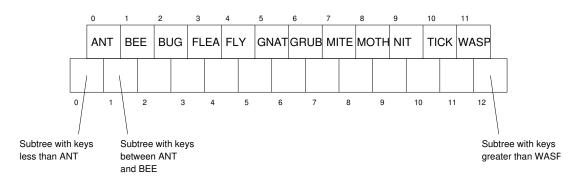
	After puts				After removals		
	Height	Leaf %	Total depth	Height	Leaf %	Total depth	
Unbalanced	32	33.3%	134507	28	16.8%	61207	
	31	33.2%	127865	26	17.0%	58171	
	30	33.1%	129037	26	16.9%	58610	
	28	33.5%	124463	26	17.3%	56086	
	32	33.4%	136730	28	16.9%	62092	
AVL	16	43.2%	100327	14	21.5%	46088	
	15	42.9%	100395	14	21.1%	46028	
	15	42.8%	100341	14	21.1%	46028	
	15	42.8%	100282	14	21.3%	45973	
	15	43.0%	100582	14	21.2%	46097	
Traditional RB	16	42.8%	101948	16	21.5%	46729	
	16	42.9%	101226	15	21.4%	46344	
	16	43.1%	101525	15	21.5%	46462	
	16	42.7%	101680	16	21.5%	46572	
	16	42.9%	101292	15	21.4%	46338	
Left-leaning RB	18	42.8%	102288	18	21.6%	46950	
8	19	42.9%	102860	16	21.3%	46774	
	18	43.1%	101949	17	21.5%	46691	
	18	42.7%	102011	17	21.6%	46938	
	19	42.9%	102552	16	21.4%	46764	







▲日▼ ▲園▼ ▲国▼ ▲国▼ ▲日▼

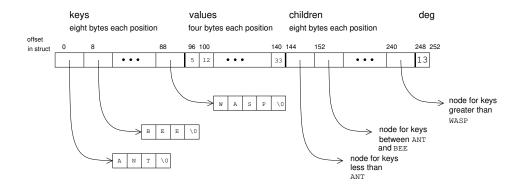


Formally, a B-tree with maximum degree M over some ordered key type is either

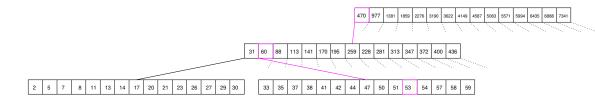
- empty, or
- ▶ a node with with d 1 keys and d children, designated as lists keys and children such that
 - $\blacktriangleright \ \lceil M/2 \rceil \le d \le M,$
 - children[0] is a B-tree such that all of the keys in that tree are less than keys[0],
 - For all i ∈ [1, d − 1), children[i] is a B-tree such that all of the keys in that tree are greater than keys[i − 1] and less than keys[i],

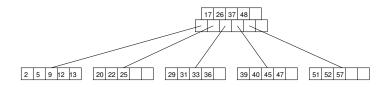
▲ロト ▲圖ト ▲画ト ▲画ト 三回 - のへで

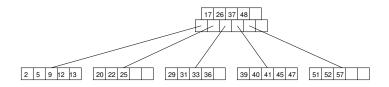
▶ and children[d - 1] is a B-tree such that all of the keys in that tree are greater than keys[d - 2].

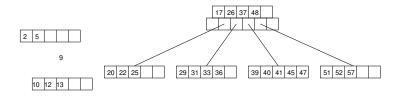


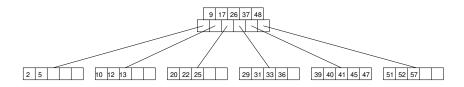
(日) (四) (王) (王) (王) (王)

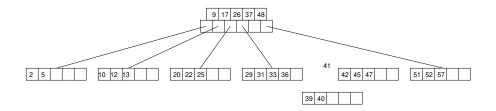




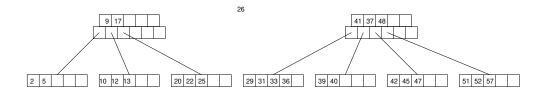




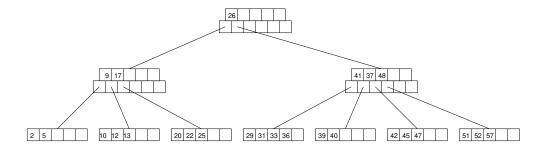




▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目 のへで



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで



$$\underbrace{(M-1)}_{\substack{\text{keys per}}} \sum_{\substack{i=0\\\text{sum of}\\\text{nodes}\\\text{at each}\\\text{level}}}^{h-1} M^{i} = (M-1) \frac{M^{h}-1}{M-1} = M^{h}-1$$

$$n = M^h - 1$$
$$M^h = n + 1$$

$$h = \log_M(n+1)$$

$$n = M^{h} - 1$$
$$M^{h} = n + 1$$
$$h = \log_{M}(n + 1)$$

$$h = \log_{\frac{M}{2}}(n+1) = \frac{\log_{M}(n+1)}{1 - \log_{M} 2}$$

Cost of a search:

$$\lg M \cdot h = \lg M \cdot \frac{\log_M(n+1)}{1 - \log_M 2}$$
$$= \lg M \frac{\frac{\lg(n+1)}{\lg M}}{1 - \frac{\lg 2}{\lg M}}$$
$$= \frac{\lg(n+1)}{1 - \frac{1}{\lg M}}$$

$$= \frac{\lg M}{\lg M-1} \lg (n+1)$$

Compare: $1.44 \lg n$ for AVL trees, $2 \lg n$ for RB trees.

Let c_0 be the cost of searching at a node (proportional to $\lg M$) and c_1 be the cost of reading a node from memory. The the cost of an entire search is

$$(c_0 + c_1) rac{\log_M(n+1)}{1 - \log_M 2}$$

Now, consolidate the constants by letting $d = \frac{c_0 + c_1}{1 - \log_M 2}$, and we have

 $d\log_M(n+1)$

▲ロト ▲圖ト ▲画ト ▲画ト 三回 - のへで

Coming up:

Do Traditional RB project (due Wed, Nov 6) (Recommended: Do Left-leaning RB project for your own practice)

Due **Mon, Nov 4** (end of day)—but hopefully you have spread it out Read Sections 5.(4-6) Do Exercise 5.13 Take quiz (red-black trees)

▲ロト ▲圖ト ▲画ト ▲画ト 三回 - のへで

Due **Thurs, Nov 7** (end of day) Read Section 6.(1&2) Do Exercises 6.(5–7) Take quiz

Due Fri, Nov 8 (end of day) Read Section 6.3 Do Exercises 6.(16, 19, 23, 33) Take quiz