
Chapter 8, Strings:

▶ General introduction; string sorting (Today)

▶ Tries (next week Monday)
▶ Other string topics (next week Wednesday)

▶ Regular expressions
▶ Huffman encoding
▶ Edit distance
▶ Grammars and parsing

Today:

▶ Why we care about strings
▶ Sorting strings

▶ String quick sort
▶ String bucket sort
▶ String radix sort

End-of-semester important dates

▶ Mon, Dec 9: Last project assigned

▶ Tues, Dec 10: Last “normal” running of project grading script

▶ Wed, Dec 11: Test 3 & 4 Review sheet distributed, Test 4 practice problems made
available.

▶ Thurs, Dec 12: Review lab (pick practice problems for Test 4)

▶ Fri, Dec 13, AM: “Two-minute warning” running of project grading script (Canvas
gradebook will not be updated—see project report in your turn-in file)
Note that Fri, Dec 13 is the Last Day of Classes.

▶ Fri, Dec 13, midnight: Official project deadline

▶ Sat, Dec 14, when I wake up: Permissions to turn-in folders turned off

▶ Mon, Dec 16: Project grading script run for final/semester grades
▶ Wed, Dec 18, 10:30am-12:30pm: Tests 3 and 4 (in lab)

▶ Test 3: On paper (like Test 1) covering BSTs (ch 5), DP (Ch 6), hashtables (Ch 7)
and strings (ch 8).

▶ Test 4: At a computer (like Test 2) covering DP (Ch 6), hashtables (Ch 7) and
strings (ch 8).

Why we care about strings

▶ Strings are different

▶ Strings are common

▶ Strings are a representative example

public class DNASequence {

/** An alphabet for DNA */

private static enum Nucleotide { A, C, G, T }

/** The string of nucleotides */

private Nucleotide[] sequence;

}

public class BigInt {

private byte[] digits;

/** Compute the sum of this and another BigInt. */

public BigInt add(BigInt other) {

// The result object

BigInt sum = new BigInt();

// The result object has at most one more digit

// than the larger number of digits of the two addends

sum.digits = new byte[(digits.length > other.digits.length?

digits.length : other.digits.length) + 1];

// Add by column

int carry = 0;

for (int i = 0; i < sum.digits.length; i++) {

// Digits in current columns of the two addends

int a = digits.length <= i? digits[i] : 0;

int b = other.digits.length <= i ? other.digits.length : 0;

// The sum of the current digits plus carry from previous iteration

int s = a + b + carry;

// Mod that sum by 256 to get the appropriate digit in result,

// divide to get the carry for next time.

sum.digits[i] = (byte) (s % 256);

carry = s / 256;

}

assert carry == 0;

return sum;

}

}

Quick sort:

i , j

· · · 91 88 44 62 56 33 59 31 59 53 · · ·
start stop︸ ︷︷ ︸

unsearched

i j

· · · 44 33 91 62 56 88 59 31 59 53 · · ·
start stop︸ ︷︷ ︸
<pivot

︸ ︷︷ ︸
≥pivot

︸ ︷︷ ︸
unsearched

i j

· · · 44 33 31 62 56 88 59 91 59 53 · · ·
start stop︸ ︷︷ ︸

<pivot
︸ ︷︷ ︸

≥pivot

Invariant 11 (Loop of partition())

(a) start ≤ i ≤ j < stop.

(b) ∀ k ∈ [start, i), sequence[k] < sequence[stop− 1].

(c) ∀ k ∈ [i , j), sequence[k] ≥ sequence[stop− 1].

(d) j − start is the number of iterations completed.

dais card bark care even barb doze cart carb axle daze exam axis bard carp

card bark care barb carb axle axis bard carp dais even doze cart daze exam

barb axle axis bard card bark care carb · · ·

i j k
bark barb card care cart dais even doze carb axle daze exam axis bard carp

start stop︸ ︷︷ ︸
<pivot

︸ ︷︷ ︸
=pivot

︸ ︷︷ ︸
≥pivot

︸ ︷︷ ︸
unsearched

Invariant 37. [Loop of string quick sort r()]
Let c be the character in position pre in the string in position stop− 1.

(a) start ≤ i ≤ j ≤ k < stop

(b) (Informal) For all the strings in range [start, i), their character in position pre is
less than c .

(c) (Informal) For all the strings in range [i , j), their character in position pre is equal
to c .

(d) (Informal) For all the strings in range [i , j), their character in position pre is
greater than to c .

(e) k − start is the number of iterations completed.

i j k
bark barb axle axis bard card care cart carb carp dais even doze daze exam

start stop︸ ︷︷ ︸
<pivot

︸ ︷︷ ︸
=pivot

︸ ︷︷ ︸
≥pivot

Invariant 38. [Precondition of string quick sort r()]
∀ i , j ∈ [start, stop), ∀k ∈ [0, pre), sequence[i][k] = sequence[j][k].

111 1 1 1

n
9

n
9

n
9

n
9

n
9

n
9

n
9

n
9

n
9

n

n · 0

n − 1

9 · (n
9
− 1)

3 · (n
3
− 1)n

3
n
3

n
3

dais card bark care even barb doze cart carb axle daze exam axis bard carp

dais card bark care even barb doze cart carb axle daze exam axis bard carp

barb carb card bard care doze axle daze bark exam even carp dais axis cart

exam even dais axis axle barb carb card bard care bark carp cart doze daze

dais barb carb card bard care bark carp cart daze doze even exam axis axle

axis axle barb bard bark carb card care carp cart dais daze doze even exam

beach event can core hope any front ball done a frond an i give eve

can core hope any ball done a an i give eve frond beach event front

can any a an i eve beach core hope done give ball frond event front

a an i beach eve event ball can done frond front hope core give any

a i ball can beach give an any done hope core frond front eve event

a an any ball beach can core done eve event frond front give hope i

Coming up:
Do Perfect hashing project (due mon, Dec 9)

Due Fri, Dec 6 (end of day)
Read Section 8.1
Do Exercises 8.(4 & 5)
Take last quiz

Due Mon, Dec 9 (end of day)
Read Section 8.2
(No quiz or practice problems)

