Linear regression unit:

- Simple linear regression with ordinary least squares (Monday)
- Lab activity: Linear regression (Wednesday)
- Deriving a closed form solution (today)
- Newton's method and gradient descent (next week Monday)
- Training linear regression using gradient descent (next week Wednesday)

▲ロト ▲圖ト ▲画ト ▲画ト 三回 - のへで

Today:

- Deriving simple linear regression
- Deriving multiple linear regression
- Deriving MLR with ridge or LASSO regularization

Simple linear regression:

$$y(x) = \theta_0 + \theta_1 x$$

Loss function (sum square error):

$$\mathcal{L}(\vec{\theta}) = \sum_{n=0}^{N-1} (y_n - y(x_n))^2 = \sum_{n=0}^{N-1} (y_n - \theta_0 - \theta_1 x_n)^2$$

Partial derivatives of the loss function:

$$\frac{\partial \mathcal{L}}{\partial \theta_0} = -2 \sum_{n=0}^{N-1} (y_n - \theta_1 x_n - \theta_0) \qquad \qquad \frac{\partial \mathcal{L}}{\partial \theta_1} = \sum_{n=0}^{N-1} -2x_n (y_n - \theta_1 x_n - \theta_0)$$

Closed form solution:

$$\theta_0 = \bar{y} - \theta_1 \bar{x}$$
 $\theta_1 = \frac{\sum_{n=0}^{N-1} (x_n - \bar{x})(y_n - \bar{y})}{\sum_{n=0}^{N-1} (x_n - \bar{x})^2}$

▲ロト ▲圖ト ▲画ト ▲画ト 三回 - のへで

... where \bar{y} and \bar{x} are the mean values of y and x

Multiple linear regression:

$$y(\mathbf{x}) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_D x_D = \theta_0 + \boldsymbol{\theta}^T \mathbf{x}$$

Most general form of linear regression on arbitrary basis functions $\phi_1 \dots \phi_D$:

$$y(\mathbf{x}) = \theta_0 + \theta_1 \phi_1(\mathbf{x}) + \cdots + \phi_D(\mathbf{x})$$

Polynomial regression—assume original data is scalar and basis functions are $\phi_i(x) = x^i$.

$$y(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \cdots + \theta_D x^D$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 ○

(It's called *linear regression* because the components are combined linearly.)

Multiple linear regression:

$$y(\mathbf{x}) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_D x_D = \theta_0 + \boldsymbol{\theta}^T \mathbf{x}$$

If we extend each observation so that it has 1 in position 0, that is $\mathbf{x} = [1, x_1, x_2, \dots, x_D]$ (so each observation acts like a vector of length D + 1), and interpret $\boldsymbol{\theta}$ as $[\theta_0, \theta_1, \theta_2, \dots, \theta_D]$, then the model family is

$$y(\mathbf{x}) = \mathbf{\theta}^T \mathbf{x}$$

(日) (部) (注) (注) (注)

$$y(\mathbf{x}) = \mathbf{\theta}^{\mathsf{T}} \mathbf{x}$$

Loss function:

$$\mathcal{L}(\boldsymbol{\theta}) = \sum_{n=0}^{N-1} (y_n - y(\mathbf{x}_n))^2$$

= $\sum_{n=0}^{N-1} (y_n - \theta_0 - \theta_1 \mathbf{x}_{n,1} \cdots - \theta_D \mathbf{x}_{n,D})^2$
= $||\mathbf{y} - \mathbf{X}\boldsymbol{\theta}||_2^2$ L_2 (Euclidean) norm, squared
= $(\mathbf{y} - \mathbf{X}\boldsymbol{\theta})^T (\mathbf{y} - \mathbf{X}\boldsymbol{\theta})$ "linear algebra" form

Partial derivatives of the loss function, "non-linear-algebra form":

$$\mathcal{L}(\boldsymbol{\theta}) = \sum_{n=0}^{N-1} (y_n - \theta_0 - \theta_1 \boldsymbol{x}_{n,1} \cdots - \theta_D \boldsymbol{x}_{n,D})^2$$

$$\frac{\partial \mathcal{L}}{\partial \theta_0} = -2 \sum_{n=0}^{N-1} (y_n - \theta_0 - \theta_1 \mathbf{x}_{n,1} \cdots - \theta_D \mathbf{x}_{n,D})$$

$$\frac{\partial \mathcal{L}}{\partial \theta_i} = -2 \sum_{n=0}^{N-1} \mathbf{x}_{n,i} (y_n - \theta_0 - \theta_1 \mathbf{x}_{n,1} \cdots - \theta_D \mathbf{x}_{n,D})$$

Redone in "linear-algebra form":

$$\mathcal{L}(\boldsymbol{\theta}) = \sum_{n=0}^{N-1} (y_n - \boldsymbol{\theta}^T \mathbf{x}_n)^2$$
$$= (\mathbf{y} - \mathbf{X}\boldsymbol{\theta})^T (\mathbf{y} - \mathbf{X}\boldsymbol{\theta})$$
$$= (\mathbf{y}^T \mathbf{y} - 2\mathbf{y}^T \mathbf{X}\boldsymbol{\theta} + \boldsymbol{\theta}^T \mathbf{X}^T \mathbf{X}\boldsymbol{\theta}$$

)

$$\nabla_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}) = \frac{\partial}{\partial \boldsymbol{\theta}} (\boldsymbol{y}^{\mathsf{T}} \boldsymbol{y} - 2 \boldsymbol{y}^{\mathsf{T}} \mathbf{X} \boldsymbol{\theta} + \boldsymbol{\theta}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} \boldsymbol{\theta})$$
$$= -2 \boldsymbol{y}^{\mathsf{T}} \mathbf{X} + 2 \boldsymbol{\theta}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X}$$

Now we set the whole lot of the partial derivatives to **0**, that is, the zero vector of length D + 1, and solve for θ .

$$\nabla_{\theta} \mathcal{L}(\theta) = -2\mathbf{y}^{T} \mathbf{X} + 2\theta^{T} \mathbf{X}^{T} \mathbf{X}$$
$$\mathbf{0} = -2\mathbf{y}^{T} \mathbf{X} + 2\theta^{T} \mathbf{X}^{T} \mathbf{X}$$
$$\mathbf{y}^{T} \mathbf{X} = \theta^{T} \mathbf{X}^{T} \mathbf{X}$$
$$\theta^{T} = \mathbf{y}^{T} \mathbf{X} (\mathbf{X}^{T} \mathbf{X})^{-1}$$
$$\theta = (\mathbf{X}^{T} \mathbf{X})^{-1} \mathbf{X}^{T} \mathbf{y}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

5.1.2 Explicit solution

Least squares is the method that solves the empirical risk minimization problem for the hypothesis class (5.1) with respect to the squared loss. We want to find w that minimizes

$$\underset{w}{\operatorname{arg\,min}} C(w) = \underset{w}{\operatorname{arg\,min}} L(f_w) = \underset{w}{\operatorname{arg\,min}} \frac{1}{2m} \sum_{i=1}^m (w^T x_i - y_i)^2$$

Note that here we use the homogeneous notation: $w = (w_1, \dots, w_n, b), x_l = (x_{l1}, \dots, x_{ln}, 1)^T$. We will use the more compact notation and equivalent formulation

$$\arg\min_{w} C(w) = \frac{1}{2m} \arg\min_{w} \|Xw - Y\|^{2},$$
(5.3)

where $X = (x_{ij})_{ij} \in \mathbb{R}^{m \times n}$, $Y = (y_1, \dots, y_m)^T$, and $\|\cdot\|$ is the Euclidean norm in \mathbb{R}^m . The number *m* is the number of samples, and *n* is the number of *features*.

Han Veiga and Ged, pg 72

Corollary 5.1.4. Following Theorem 5.1.3 and assuming that the data $\{x_1, \ldots, x_m\}$ are not colinear, we can specify some properties of the solution w: (i) When n = m, we have by definition $X^+ = X^{-1}$ and thus $w = X^{-1}Y$. (ii) When m > n, X^TX is invertible, and there is a unique $w = (X^TX)^{-1}X^TY$. (iii) When n > m, X^TX is not invertible, and there are infinitely many solutions w.

Han Veiga and Ged, pg 74

The proof of this corollary is left as an exercise to the reader.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ つくの

Loss function for ridge regularization (ridge regression):

$$\mathcal{L}_{\textit{ridge}}(\boldsymbol{\theta}) = \underbrace{||\boldsymbol{y}^{T} - \boldsymbol{\theta}^{T} \boldsymbol{X}||_{2}^{2}}_{\text{original loss}} + \underbrace{\alpha ||\boldsymbol{\theta}||_{2}^{2}}_{\text{regularizer}}$$

Finding a closed form for ridge regression:

$$\nabla_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}) = -2\boldsymbol{y}^{T} \mathbf{X} + 2\boldsymbol{\theta}^{T} \mathbf{X}^{T} \mathbf{X} + 2\alpha \boldsymbol{\theta}$$
$$\mathbf{0} = -2\boldsymbol{y}^{T} \mathbf{X} + 2\boldsymbol{\theta}^{T} \mathbf{X}^{T} \mathbf{X} + 2\alpha \boldsymbol{\theta}$$

$$\theta^{T} \mathbf{X}^{T} \mathbf{X} + \alpha \theta = \mathbf{y}^{T} \mathbf{X}$$
$$\theta^{T} (\mathbf{X}^{T} \mathbf{X} + \alpha \mathbf{I}) = \mathbf{y}^{T} \mathbf{X}$$

$$\theta^{T} = \mathbf{y}^{T} \mathbf{X} (\mathbf{X}^{T} \mathbf{X} + \alpha \mathbf{I})^{-1}$$
$$= (\mathbf{X}^{T} \mathbf{X} + \alpha \mathbf{I})^{-1} \mathbf{X}^{T} \mathbf{y}$$

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目 のへで

Loss function for ridge regularization:

$$\mathcal{L}_{\textit{ridge}}(\boldsymbol{\theta}) = \underbrace{||\boldsymbol{y}^{T} - \boldsymbol{\theta}^{T} \boldsymbol{X}||_{2}^{2}}_{\text{original loss}} + \underbrace{\alpha ||\boldsymbol{\theta}||_{2}^{2}}_{\text{regularizer}}$$

Loss function for LASSO regularization

$$\mathcal{L}_{LASSO}(\boldsymbol{\theta}) = ||\boldsymbol{y}^{T} - \boldsymbol{\theta}^{T} \mathbf{X}||_{2}^{2} + \alpha ||\boldsymbol{\theta}||_{1}$$
$$= ||\boldsymbol{y}^{T} - \boldsymbol{\theta}^{T} \mathbf{X}||_{2}^{2} + \alpha \sum_{i=1}^{D} |\theta_{i}|$$

Coming up:

Due Thurs, Jan 30: *Read the textbook from Chapters 1 and 5 (see Canvas for specific sections)*

▲□▶ ▲圖▶ ▲필▶ ▲필▶ 三里

Due Fri, Jan 31: *Do KNN programming assignment*

Due Tues, Feb 4: *Take linear regression quiz Propose project topic*

Due Thurs, Feb 6: *Read textbook from Chapter 3 (see Canvas for details)*

Due Fri, Feb 7:

Do linear regression programming assignment