
Linear regression unit:

▶ Simple linear regression with ordinary least squares (Monday)

▶ Lab activity: Linear regression (Wednesday)

▶ Deriving a closed form solution (today)

▶ Newton’s method and gradient descent (next week Monday)

▶ Training linear regression using gradient descent (next week Wednesday)

Today:

▶ Deriving simple linear regression

▶ Deriving multiple linear regression

▶ Deriving MLR with ridge or LASSO regularization



Simple linear regression:

y(x) = θ0 + θ1x

Loss function (sum square error):

L(θ⃗) =
N−1∑
n=0

(yn − y(xn))
2 =

N−1∑
n=0

(yn − θ0 − θ1xn)
2

Partial derivatives of the loss function:

∂L
∂θ0

= −2
N−1∑
n=0

(yn − θ1xn − θ0)
∂L
∂θ1

=
N−1∑
n=0

−2xn(yn − θ1xn − θ0)

Closed form solution:

θ0 = ȳ − θ1x̄ θ1 =

∑N−1
n=0 (xn − x̄)(yn − ȳ)∑N−1

n=0 (xn − x̄)2

. . . where ȳ and x̄ are the mean values of y and x



Multiple linear regression:

y(x) = θ0 + θ1x1 + θ2x2 + · · ·+ θDxD = θ0 + θTx

Most general form of linear regression on arbitrary basis functions ϕ1 . . . ϕD :

y(x) = θ0 + θ1ϕ1(x) + · · ·ϕD(x)

Polynomial regression—assume original data is scalar and basis functions are
ϕi (x) = x i .

y(x) = θ0 + θ1x + θ2x
2 + · · · θDxD

(It’s called linear regression because the components are combined linearly.)



Multiple linear regression:

y(x) = θ0 + θ1x1 + θ2x2 + · · ·+ θDxD = θ0 + θTx

If we extend each observation so that it has 1 in position 0, that is
x = [1, x1, x2, . . . xD ] (so each observation acts like a vector of length D + 1), and
interpret θ as [θ0, θ1, θ2, . . . θD ], then the model family is

y(x) = θTx



y(x) = θTx

Loss function:

L(θ) =
∑N−1

n=0 (yn − y(xn))2

=
∑N−1

n=0 (yn − θ0 − θ1xn,1 · · · − θDxn,D)
2

= ||y − Xθ||22 L2 (Euclidean) norm, squared

= (y − Xθ)T (y − Xθ) “linear algebra” form



Partial derivatives of the loss function, “non-linear-algebra form”:

L(θ) =
∑N−1

n=0 (yn − θ0 − θ1xn,1 · · · − θDxn,D)2

∂L
∂θ0

= −2
∑N−1

n=0 (yn − θ0 − θ1xn,1 · · · − θDxn,D)

∂L
∂θi

= −2
∑N−1

n=0 xn,i (yn − θ0 − θ1xn,1 · · · − θDxn,D)



Redone in “linear-algebra form”:

L(θ) =
∑N−1

n=0 (yn − θTxn)2

= (y − Xθ)T (y − Xθ)

= (yTy − 2yTXθ + θTXTXθ)

∇θL(θ) = ∂
∂θ (y

Ty − 2yTXθ + θTXTXθ)

= −2yTX+ 2θTXTX



Now we set the whole lot of the partial derivatives to 0, that is, the zero vector of
length D + 1, and solve for θ.

∇θL(θ) = −2yTX+ 2θTXTX

0 = −2yTX+ 2θTXTX

yTX = θTXTX

θT = yTX(XTX)−1

θ = (XTX)−1XTy



5.1.2 Explicit solution 

Least squares is the method that solves the empirical risk minimization problem for the 
hypothesis class (5.1) with respect to the squared loss. We want to find w that minimizes 

arg min C(w) = arg min L(f) = arg min 
W W 

arg min C(w) = 
1 

2m 

W 

1 

W 

2rm 

m 

Note that here we use the homogeneous notation: w= (W,,..., W,,b), X =(X1..,xin, 1)'. 
We will use the more compact notation and equivalent formulation 

X(w'x 
i=1 

arg min |XW - YI, 

-). 

(5.3) 

where X = (X;) e R"*, Y = (',.... y', and | || is the Euclidean norm in R". The 
number m is the number of samples, and n is the number of features. Han Veiga and Ged, pg 72

Han Veiga and Ged, pg 74

Corollary5.1.4. Following Theorem 5.1.3 and assuming that the d�ata {x1,... ,Xm} are not 
colinea, we can specify some properties of the solution W: 
() When n = m, we have by definition X* =X- and thus w = XY. 
(ü) Whern m> n, X"X is invertible, and there is a unique w = (Xxyx'Y. 
(ii) When n> m, X'x is not invertible, and there are infinitely many solutions w. 

The proof of this corollary is left as an exercise to the reader. 





Loss function for ridge regularization (ridge regression):

Lridge(θ) = ||yT − θTX||22︸ ︷︷ ︸
original loss

+ α||θ||22︸ ︷︷ ︸
regularizer

Finding a closed form for ridge regression:

∇θL(θ) = −2yTX+ 2θTXTX+ 2αθ

0 = −2yTX+ 2θTXTX+ 2αθ

θTXTX+ αθ = yTX

θT (XTX+ αI) = yTX

θT = yTX(XTX+ αI)−1

= (XTX+ αI)−1XTy



Loss function for ridge regularization:

Lridge(θ) = ||yT − θTX||22︸ ︷︷ ︸
original loss

+ α||θ||22︸ ︷︷ ︸
regularizer

Loss function for LASSO regularization

LLASSO(θ) = ||yT − θTX||22 + α||θ||1

= ||yT − θTX||22 + α
∑D

i=1 |θi |



Coming up:

Due Thurs, Jan 30:
Read the textbook from Chapters 1 and 5 (see Canvas for specific sections)

Due Fri, Jan 31:
Do KNN programming assignment

Due Tues, Feb 4:
Take linear regression quiz
Propose project topic

Due Thurs, Feb 6:
Read textbook from Chapter 3 (see Canvas for details)

Due Fri, Feb 7:
Do linear regression programming assignment


