
Support vector machines unit:

▶ Linear programming (last week Wednesday)

▶ SVM concepts (last week Friday)

▶ Lab: SVM applications (Monday)

▶ The math of SVMs (Wednesday)

▶ SVM algorithms (today)

Today:

▶ Summary of hard-margin version, with algorithm

▶ Quadratic programming and QP solver library

▶ Soft-margin version

▶ Kernelized version

▶ Put it all together in an algorithm

The most important source for all of this was Stephen Marsland, Machine Learning: An Algorithmic

Perspective, 2015, pg 179–183.



Given training data X,yyy , where yn ∈ {−1,+1}, find www , b, and r , specifically

maximize r

subject to the constraints ∀ xnxnxn, yn, yn(www
Txnxnxn + b) ≥ r

||www || = 1
r > 0

Or, equivalently
minimize 1

2 ||www ||2

subject to the constraints ∀ xnxnxn, yn, yn(www
Txnxnxn + b) ≥ 1

alternately written as ∀ xnxnxn, yn, 1− yn(www
Txnxnxn + b) ≥ 0



The squared norm 
results in a convex 

quadratic 
programming 
problem for the SVM 
(Section 125). 

hard margin SVM 
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Combining the margin maximization with the fact hat examples need to be 
the correct side of the hyperplane (based on their labels) gives us 

max 
w,b 

subject to yn((w,n) + b) >1 for all n = 1,...,N. 

min 
w.b 

1 

Instead of maximizing the reciprocal of the norm as in (12.16), we often mini. 
mize the squared norm. We also often include a constant that does not affect 
the optimal w,b but yields a tidier form when we compute the gradient. Then 
our objective becomes 

subject to yn((u, Tn)+ b) > 1 for all n=1,. .. ,N. 

Classification with Support Vector Machines 

max 
w.b.r 

12.2.3 Why We Can Set the Margin to 1 

Equation (12.18) is known as the hard margin SVM. The reason for the ex 
pression "hard" is because the preceding formulation does not allow for any 
violations of the margin condition. We will see in Section 12.2.4 that this "hard'" 
condition can be relaxed to accommodate violations if the data is not linearly 
separable. 

margin 

In Section 12.2.1, we argued that we would like to maximize some value r, 
which represents the distance of the closest example to the hyperplane. In Sec 
tion 12.2.2, we scaled the data such that the closest example is of distance 1 to 
the-hyperplane. Tn this section, we relate the two derivations and show that they 
are equivalent. 

Theorem 12.1. Maximizing the margin r, where we consider normalized weights as in (12.10). 

subject to ya((w,n) + b) >r, lw =1, r>0 
data fiting 

min 
w,b 

is equivalent to scaling the data, such that the margin is unity: 

subject to 

(12.16) 

normalization 

margin 

(12.17) 

yn((w, ) + b) > 1. 

(12.18) 

data fiting 

(12.19) 

(12.20) 

(12.21) 

Prooj Consider (1 2.20). Since the sauare is a strictly monotonic transformauon Or nonnegative arguments, the maximum stays the same if we consider r* In tne objeclive. Since ||w= 1, we can reparametrize the equation with a new welg vector w' that is not normali1zed by explicitly using T We obtam 

12.2 Primal Suppor Vector Machine 

subject to 

max 
w',b,r 

max 
w',b,r 

subject to 

w' 

(i)+)> 
Equation (12.22) explicitly states that the distance r is positive. Therefore, we 
can divide the first constraint by r, which yields 

By substituting this result into (12.23), we obtain 

X 

max 

r>0. 

1 

renaming the parameters to w" and b". Since w' = :, rearranging for r 
gives 

>1, r>0 

343 

12.2.4 Soft Margin SVM: Geometric View 

Linearly separable data, with a large 

margin 

(12.22) 

(12.23) 

subject to yn (w,) + b)>1. 

The final step is to observe that maximizing yields the same solution as 

(b) Nonlinearly separable datu 

(12.24) 

In the case where data is not linearly separable, we may wish to allow some 

examples to fall within the margin region, or even to be on the wrong side of the 

hyperplane as illustrated in Figure 12.6. 

(12.25) 

Note hatr >0 
because we assumed 

linear separability. 
and hence there is no 

issue to divide by r. 

Figure 126 (a) 
Linearly separable 
and (b) nonl1ncarty 

separable data. 

minimizing lw, which concludes the proof of Theorem 12.1. 



The Lagrangian of the hard-margin version is

L(www , b,λλλ) =
1

2
||w ||2 +

N−1∑
n=0

λn(1− yn(www
Txxxn + b))

Take the gradient with respect to www and b, set to 000 or 0

∇wwwL = www −
∑N−1

n=0 λnynxxxn ∇bL = −
∑N−1

n=0 λnyn

000 = www −
∑N−1

n=0 λnynxxxn 0 = −
∑N−1

n=0 λnyn

www∗ =
∑N−1

n=0 λnynxxxn Wait, how does this help us find b∗?

. . . where www∗ and b∗ are the optimal weights and bias.



www∗ =
∑N−1

n=0 λnynxxxn =
[
. . .

∑N−1
n=0 λnynxxxn,i . . .

]
and

∑N−1
n=0 λnyn = 0.

Theorem 3.4.3 in Han Veiga and Ged tells us that with www∗, b∗, and λλλ∗,

∀ xxxn, yn, λn(1− yn(www
Txxxn + b)) = 0

. . . which implies λn = 0 for all non-support vectors xxxn

Substitute www∗ and b∗ into the Lagrangian to make it a function just of λλλ.

D(λλλ)︸ ︷︷ ︸
dual

= L(www∗, b∗︸ ︷︷ ︸
filled-in

,λλλ) = 1
2 ||www ∗ ||2 +

N−1∑
n=0

λn(1− yn(www∗Txxxn + b∗))

Simplify this based on results above into a quadratic program involving only X, yyy , and
λλλ with constraints

∑N−1
n=0 λnyn = 0.



A quadratic programming problem (or a quadratic program) can be stated as, minimize

1

2
xxxTPxxx + qqqTxxx

subject to

Gxxx ≤ hhh

Axxx = bbb

In this formula, let n be the number of variables, m be the number of inequality
constraints, and ℓ be the number of equality constraints.



Soft-margin form:

minimize 1
2 ||www ||2 + C

N−1∑
n=0

ξn

subject to the constraints ∀ xnxnxn, yn, yn(www
Txnxnxn + b) ≥ 1− ξn



Define a hyperplane

wwwTϕ(xxx) + b = 0

such that

f (xxx) = wwwTϕ(xxx) + b

classifies xxx .

ϕ is a feature map that projects the vectors xxx into higher dimensions. Assume k is a
kernel function corresponding to ϕ for efficiently computing dot products in these
higher dimensions.

k(xxxa,xxxb) = ϕ(xxxa)
Tϕ(xxxb)



Kernelized form (hard- or soft-margin):

minimize 1
2 ||www ||2

[
+C

N−1∑
n=0

ξn

]

subject to the constraints ∀ xnxnxn, yn, yn(www
Tϕ(xnxnxn + b)) ≥ 1 [−ξn]

(This doesn’t actually use the kernel function. . . but when we put the problem in this
form, we anticipate using the kernel.)



This quadratic programming problem has an equivalent Lagrangian function

L(www , b,λλλ) =
1

2
||www ||2 −

N−1∑
n=0

λnyn
(
wwwTϕ(xxxn) + b

)
This function has the dual representation

D(λλλ) =
N−1∑
n=0

λn −
1

2

N−1∑
n=0

N−1∑
m=0

λnλmynym · k(xnxnxn,xmxmxm)

which we want to maximize subject to constraints

0 ≤ λn [≤ C ],∑N−1
n=0 λnyn = 0

where k(xxxn,xxxm) = ϕ(xxxn)
Tϕ(xxxm)



Let K be the kernel matrix for data set xxx0,xxx1, . . .xxxN−1:

K =


k(x0x0x0,x0x0x0) k(x1x1x1,x0x0x0) · · · k(xN−1xN−1xN−1,x0x0x0)
k(x0x0x0,x1x1x1) k(x1x1x1,x1x1x1) · · · k(xN−1xN−1xN−1,x1x1x1)

...
...

k(x0x0x0,xN−1xN−1xN−1) k(x1x1x1,xN−1xN−1xN−1) · · · k(xN−1xN−1xN−1,xN−1xN−1xN−1)


Then

D(λλλ) =
N−1∑
n=1

λn −
1

2

N−1∑
n=0

N−1∑
m=0

λnλmynym · k(xnxnxn,xmxmxm)

becomes

D(λλλ) = 111Tλλλ− 1

2
λλλT (yyyyyyT ◦K)λλλ

where 111 = [1 1 1 · · · 1]T and ◦ indicates the Hadamard product.



In the formula

D(λλλ) = 111Tλλλ− 1

2
λλλT (yyyyyyT ◦K)λλλ

the Hadamard product ◦ gives us

yyyyyyT◦K =


y0 · y0 · k(x0x0x0,x0x0x0) y1 · y0 · k(x1x1x1,x0x0x0) · · · yN−1 · y0 · k(xN−1xN−1xN−1,x0x0x0)
y0 · y1 · k(x0x0x0,x1x1x1) y1 · y1 · k(x1x1x1,x1x1x1) · · · yN−1 · y1 · k(xN−1xN−1xN−1,x1x1x1)

...
...

y0 · yN−1 · k(x0x0x0,xN−1xN−1xN−1) y1 · yN−1 · k(x1x1x1,xN−1xN−1xN−1) · · · yN−1 · yN−1 · k(xN−1xN−1xN−1,xN−1xN−1xN−1)





Quadratic programming problem:

Gxxx ≤ hhh
min 1

2xxx
TPxxx + qqqTxxx

Axxx = bbb

Our problem:

0 ≤ λi [≤ C ]
max 111Tλλλ− 1

2λλλ
T (yyyyyyT ◦K)λλλ ∑N−1

i=0 λiyi = 0

We want to find λλλ. Let P = yyyyyyT ◦K, qqq =


−1
−1
...
−1

, A =
(
y0 y1 · · · yN−1

)
, and

bbb =
(
0
)
.



Quadratic programming problem:

Gxxx ≤ hhh
min 1

2xxx
TPxxx + qqqTxxx

Axxx = bbb

For hard margin classification (0 ≤ λi ),

G = −I =


−1 0 . . . 0
0 −1 . . . 0
...

...
0 0 . . . −1



hhh = 000 =


0
0
...
0





Quadratic programming problem:

Gxxx ≤ hhh
min 1

2xxx
TPxxx + qqqTxxx

Axxx = bbb

For soft margin classification (0 ≤ λi ≤ C ),

G =



1 0 . . . 0
0 1 . . . 0
...

...

0 0
... 1

−1 0 . . . 0
0 −1 . . . 0
...

...
0 0 . . . −1


hhh =



C
C
...
C
0
0
...
0





Support vectors are {xxx i | λi ̸= 0}.

Weights are

www =
N−1∑
n=0

λnynxxxn =
∑

n | λn ̸=0

λnynxxxn

Intercept/bias is

b =
1

|{λn | λn ̸= 0}|
∑

m | λj ̸=0

yj −
∑

n | λn ̸=0

λnyn · k(xxxn,xxxm)





To train a classifier for hard margin classification:

Given data X, targets yyy , and kernel function k ,
Compute kernel matrix K
Compute P = yyyyyyT ◦K
Assemble qqq vector of −1s
Assemble A matrix of yi along the diagonal
Assemble G matrix of −1s along the diagonal
Assemble hhh vector of 0s
Compute λλλ vector by feeding P, qqq, GGG , hhh, A, and bbb = [0] into QP solver
Select support vectors from λλλ that are not zero
Compute b

(For soft margin, modify G and hhh.)
To classify new data point xxx , compute sign(

∑
n | λn ̸=0 λnynk(xxxn,xxx) + b)



Coming up:

Due Fri, Mar 7:
Take SVM quiz

Due Wed, Mar 19:
Implement SVM classification

(Midterm on Fri, Mar 21)


