POS-tagging and Hidden Markov Models unit:

- Word classes and the POS-tagging problem
- ► HMM definition and problem statements
- Solution to Problem 1 (forward algorithm) and POS application
- ▶ Solution to Problem 2 (Viterbi algorithm) and POS application
- ► Solution to Problem 3 (EM/Baum-Welch algorithm) and linguistic application

Universal			Penn Treebank		
ADJ	Adjective	JJ	Adjective	yellow	
		JJR	Comparative adjective	bigger	
		JJS	Superlative adjective	wildest	
ADP	Adposition	IN	Preposition	of, in , by	
		RP	Particle	up, off	
ADV	Adverb	RB	Adverb	quickly	
		RBR	Comparative adverb	faster	
		RBS	Superlative adverb	fastest	
		WRB	Wh-adverb	how, where	
CONJ	Conjunction	CC	Coordinating conjunction	and, but, or	

	Universal		Penn Treebank	
DET	Determiner, article	DT	Determiner	a, the
		PDT	Predeterminer	all, both
		PRP\$	Posessive pronoun	your, one's
		WDT	Wh-determiner	which, that
		WP\$	Wh-possessive	whose
NOUN	Noun	NN	Singular or mass noun	llama
		NNP	Proper noun, singular	IBM
		NNPS	Noun, plural	llamas
NUM	Numeral	CD	Cardinal number	one, two
PRT	Particle	POS	Possessive ending	's
		TO	"to" [Infinitive marker]	to
PRON	Pronoun	EX	Existential "there"	there
		PRP	Personal pronoun	I, you, he
		WP	Wh-pronoun	what, who

	Universal	Р	enn Treebank	
VERB	Verb	MD	Modal can, should	
		VB	Verb base	eat
		VBD	Verb past tense	ate
		VBG	Verb gerund	eating
		VBN	Verb past participle	eaten
		VBP	Verb non-3sp	eat
		VBZ	Verb 3sp	eats
	Puntuation mark	(none)		
Χ	Other	FW	Foreign word	mea culpa
		LS	List item marker	1, 2, One
		SYM	Symbol	+, %, &
		UH	Interjection	ah, oops

PRON	VERB	PRT	VERB	ADP	DET	ADJ	NOUN
1	rose	to	saw	off	the	still	rose
	PRON						
that	I	saw	still	grew	by	the	still.

Suppose we want to determine the average annual temperature at a particular location on earth over a series of years.

To simplify the problem, we consider only two annual temparatures, "hot" and "cold." Suppose that evidence indicates that the probability of a hot year followed by another hot year is 0.7 and the probability that a cold year is followed by another cold year is 0.6.

Also suppose that research indicates a correlation between the size of tree growth rings and temparature. For simplicity, we consider only three different tree ring sizes: small, medium, and large. Finally suppose hot years are more likely to result in large tree rings, cold years in small.

	Н	C	S	Μ	L
Н	0.7	0.3	0.1	0.4	0.5
C	0.4	0.6	0.7	0.2	0.1

Mark Stamp, "A Revealing Introduction to Hidden Markov Models". Abridged.

Let Q be a set of N states types. Use $i, j, ii, jj \in [0, N)$ to index into Q. Let V be a set of M symbols types. Use $k \in$ to index into V.

Let \bar{S} be a sequence of T state tokens and $\bar{\mathcal{O}}$ be a sequence of T observation tokens. Use $t \in [0, T)$ to index into $\bar{\mathcal{O}}$ and \bar{S}

Thus $\bar{\mathcal{O}} = \langle \mathcal{O}_0, \mathcal{O}_1, \dots \mathcal{O}_{T-1} \rangle$ is a sequence of observation tokens, e.g., $\mathcal{O}_t = v_k$, and $\bar{S} = \langle S_0, S_1, \dots S_{T-1} \rangle$ is a sequence of state tokens, e.g., $S_t = q_j$.

A **hidden Markov model** is a triple $\lambda = (A, B, \pi)$ where

- ▶ A is an $N \times N$ matrix of state transition probabilities: $a_{ij} = P(S_{t+1} = q_j \mid S_t = q_i)$
- ▶ B is an $N \times M$ matrix of emission (or observation) probabilities: $b_j(k) = P(\mathcal{O}_t = v_k \mid S_t = q_j)$
- ▶ π is the initial state distribution. $\pi_i = P(S_0 = q_i)$

Four HMM problems:

- Problem 0. Given $\bar{\mathcal{O}}$ together with $\bar{\mathcal{S}}$, compute $\lambda = (A, B, \pi)$ most likely to have produced those sequences. [Solution: MLE, possibly with smoothing.]
- Problem 1. Given $\lambda = (A, B, \pi)$ and $\bar{\mathcal{O}}$, compute the probability that λ assigns to $\bar{\mathcal{O}}$. [Solution: The forward algorithm.]
- Problem 2. Given $\lambda = (A, B, \pi)$ and $\bar{\mathcal{O}}$, find \bar{S} that maximizes the probability that λ assigns to $\bar{\mathcal{O}}$. [Solution: The Viterbi algorithm.]
- Problem 3. Given $\bar{\mathcal{O}}$, M (or V), and N, find $\lambda=(A,B,\pi)$ that maximizes the likelihood of $\bar{\mathcal{O}}$. [Solution: The Baum-Welch algorithm, a version of EM.]

$$\int \pi_i \cdot b_i(\mathcal{O}_0)$$
 if $t=0$

$$lpha_t(i) = P(\bar{\mathcal{O}}[:t+1], S_t = q_i \mid \lambda) = \left\{ egin{array}{l} \pi_i \cdot b_i(\mathcal{O}_0) & \text{if } t = 0 \\ \\ \left(\sum_{j=0}^{N-1} lpha_{t-1}(j) \cdot a_{ji}
ight) \cdot b_i(\mathcal{O}_t) & \text{otherwise} \end{array}
ight.$$

$$eta_t(i) = P(ar{\mathcal{O}}[t+1:] \mid S_t = q_i) = \left\{egin{array}{c} 1 & ext{if } t = T-1 \ \\ \sum\limits_{j=0}^{N-1} a_{ij} \cdot b_j(\mathcal{O}_{t+1}) \cdot eta_{t+1}(j) & ext{if } t < T-1 \end{array}
ight.$$

$$\delta_t(i) = \max_{\bar{S}[:t+1]} P(\bar{\mathcal{O}}[:t+1], \bar{S}[:t+1] \mid S_t = q_i)$$

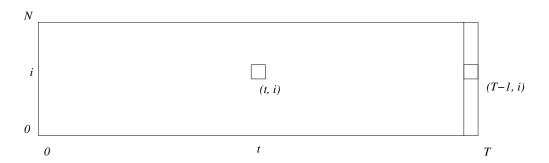
$$\psi_t(i) = \underset{q_i}{\operatorname{argmax}} P(S_{t-1} = q_j, S_t = q_i \mid \bar{\mathcal{O}}[:t+1])$$

$$= \left\{egin{array}{ll} ext{None} & ext{if } t=0 \ \\ ext{argmax} \ \delta_{t-1}(j) \cdot a_{ji} & ext{if } t>0 \ 0 \leq j < N \end{array}
ight.$$

$$\lg \sum_{i=0}^{n-1} x_i = \lg(x_0 + x_i + \dots + x_{n-1})$$

$$= \lg x_0 + \lg \left(1 + \sum_{i=1}^{n-1} \frac{x_i}{x_0}\right)$$

$$= \lg x_0 + \lg \left(1 + \sum_{i=1}^{n-1} 2^{\lg x_i - \lg x_0}\right)$$



- $\delta_t(i)$ What is the probability of the most likely state sequence to produce $\bar{\mathcal{O}}[:t+1]$ with q_i as the state at time t?
- $\psi_t(i)$ In the most likely state sequence to produce $\bar{\mathcal{O}}[:t+1]$ with q_i as the state at time t, what would be the state at time t-1?
- $\delta_{T-1}(i)$ What is the probability of the most likely state sequence to produce $\bar{\mathcal{O}}$ with q_i as the last state (that is, at time T-1)?
- $\psi_{T-1}(i)$ In the most likely state sequence to produce $\bar{\mathcal{O}}$ with q_i as the last state, what would be the second-to-last state (that is, at time T-2)?

$$\xi_{t}(i,j) = P(S_{t} = q_{i}, S_{t+1} = q_{j} \mid \bar{\mathcal{O}}, \lambda)$$

$$= \frac{P(S_{t} = q_{i}, S_{t+1} = q_{j}, \bar{\mathcal{O}} \mid \lambda)}{P(\bar{\mathcal{O}} \mid \lambda)}$$

$$= \frac{\alpha_{t}(i) \cdot a_{ij} \cdot b_{j}(\mathcal{O}_{t+1}) \cdot \beta_{t+1}(j)}{\sum_{i:i} \sum_{i:i} \alpha_{t}(ii) \cdot a_{ii} \cdot jj} \cdot b_{jj}(\mathcal{O}_{t+1}) \cdot \beta_{t+1}(jj)}$$

$$\gamma_t(i) = P(S_t = q_i \mid \bar{\mathcal{O}}, \lambda)$$

$$= \sum_{j=0}^{N-1} P(S_t = q_i, S_{t+1} = q_j \mid \bar{\mathcal{O}}, \lambda)$$

$$= \sum_{j=0}^{N-1} \xi_t(i, j)$$

$$\pi_i = \gamma_0(i)$$

$$a_{ij} = \frac{\text{expected transitions from } q_i \text{ to } q_j}{\text{expected transitions from } q_i} = \frac{\sum_{t=0}^{T-2} \xi_t(i,j)}{\sum_{t=0}^{T-2} \gamma_t(i)}$$

$$b_i(k) = \frac{\text{expected times } q_i \text{ emits } v_k}{\text{expected times in } q_i} = \frac{\sum_{t=0}^{T-2} \{ \gamma_t(i) \mid \mathcal{O}_t = v_k \}}{\sum_{t=0}^{T-2} \gamma_t(i)}$$

Coming up:

- ▶ Reading from J&M, Sections 17.(0–4) (Fri, Sept 24)
- ► HMM quiz (Thurs, Oct 2)
- ▶ Reading excerpt from *Gulliver's Travels* (Fri, Oct 3)
- ► HMM programming assignment (Wed, Oct 8)
- ► Reading from J&M, Section 18.(0–6) (Mon, Oct 6)
- Grammars quiz (Tues, Oct 7)