
Machine learning and naive Bayes classification units

▶ Machine learning boot camp (last week Friday)

▶ Finishing basic ML terms; bag-of-words model (Monday)

▶ The math of multinomial naive Bayes classification (Today)

▶ Lab: NBC (Friday)

▶ Practical considerations of NBC (next week Monday)

Today:

▶ “Bayes”

▶ “Naive”

▶ “Multinomial”

▶ Putting it together



Bayesian vs Frequentist Probability

The frequentist point of view is based on the following postulates:

F1 Probability refers to limiting relative frequencies. Probabilities are objective
properties of the real world.

F2 Parameters are fixed, unknown constants.
F3 Statistical procedures should be designed to have well-defined long run

frequency properties.

The Bayesian approach is based on the following postulates:

B1 Probability describes degree of belief, not limiting frequency. “The probability
that Albert Einstein drank a cup of tea on August 1, 1948 is .35” does not
refer to any limiting frequency but reflects my strength of belief that the
proposition is true.

B2 We can make probabilty statements about parameters, even though they are
fixed constants.

B3 We make inferences about a parameter by producing a probability distribution
for it.

Wasserman, All of Statistics, pg 175-176, abridged.



The conditional probability of event X in light of event Y is

P(X |Y ) =
P(XY )

P(Y )

Bayes’s theorem allows us to convert from one conditional probability to another

P(X |Y )︸ ︷︷ ︸
posterior

=

likelihood︷ ︸︸ ︷
P(Y |X )

prior︷ ︸︸ ︷
P(X )

P(Y )︸ ︷︷ ︸
marginal

Think of X as the hypothesis and Y as the evidence. What do we think of hypothesis
X in light of evidence Y ?



Let d⃗ be a text/document (observation/data point) viewed as a vector of features

d⃗ =


f0
f1
...

fD−1



The näıve Bayesian assumption is

P(d⃗) = P(f0) · P(f1) · . . . · P(fD−1)

or
P(d⃗ |c) = P(f0|c) · P(f1|c) · . . . · P(fD−1|c)



Multinomial distribution

Suppose you have an urn of ball of k colors. Let pi be the probability of drawing a ball
of color i .

∑k−1
i=0 pi = 1. Assume

pi =
the number of balls of color i

the number of balls altogether

Suppose you draw n times with replacement. Consider the event that you get color 0
x0 times, color 1 x1 times, etc, for some x0, x1, . . . . It must be that

∑k−1
i=0 xi = n.

Refer to this event as

x⃗ =


x0
x1
...

xk−1


The probability of event x⃗ is

f (x⃗) =

(
n

x0x1 . . . xk−1

)
px00 px11 . . . p

xk−1

k−1

Based on Wasserman, pg 39



The multinomial näıve Bayes classifier

To classify text/document/data point d represented as a vector with features f0, f1, . . .,

cNB = argmax
c∈C

P(c) ·
∏

P(fi | c)

Compare Eq. B.8 in J & M

Rewritten: Let V be the set of word types we care about, let D = |V |, let fi be the
count of word/feature i in document d , and let P(vj | c) be the probability of vj
occurring in a doucment of class c . Then

cNB = argmaxc∈C P(c) ·
∏D−1

i=0 P(vi | c)fi

= argmaxc∈C logP(c) +
∑D−1

i=0 fi logP(vi | c)



Coming up:

▶ Do bag-of-words programming assignment (Wed, Oct 25)

▶ Read J&M 4.(0-8, 10) (Wed, Oct 25)

▶ Take NBC quiz (Tues, Nov 4)

▶ Do NBC programming assignment (Mon, Nov 10)

(There will be some sort of reading for the next unit (stylometry), but it will be from
something outside our textbook. I haven’t decided on it yet, though.)


