Regular expressions unit:

- Regular expressions—principles and Python (today)
- Lab: Building a RegEx-based chatbot (Friday)
- ► The edit distance algorithm [stand alone topic] (next week Monday)

Today:

- Retrospective from lab last time
- Why we care about regular expressions
- Review and practice of regular expressions by definition
- Overview and demo of regular expressions in Python

- An alphabet is a set of symbols, Σ .
- A **string** over an alphabet is a sequence of symbols from that alphabet. Σ * is the set of all strings over alphabet Σ .
- ▶ A **language** over an alphabet is a set of strings, that is, a subset of Σ *.
- ▶ Regular expressions constitute a system for specifying languages. (J&M, "a language for specifying text search strings... an algebraic notation for characterizing a set of strings.", §2.7, pg 18.).
 - An individual regular expression denotes a language, that is, a set of strings.

```
base \begin{cases} \emptyset & \text{the empty set or surings} \\ \varepsilon & \text{the set containing the empty string, } \{""\} \\ a & \text{the set containing only the string with only } a, \\ \frac{containing}{containing} \sum_{i=1}^{n} \frac{containing}{a} \sum_{i=1}^{n}
                                                                                                                                                                                                                                            the empty set of strings
                                                                                                                                                                                                                                               for some a \in \Sigma, \{"a"\}
for some regular expression r
```

Abbreviation	Meaning	Equivalence
[abc]	One occurrence of any of these symbols	(a b c)
[a-c]	One occurrence of any symbol in this range	(a b c)
r?	Optionally an occurrence of a string defined by r	(r arepsilon)
<i>r</i> {5}	5 occurrences of a string defined by r	rrrrr
$r{3,5}$	Between 3 and 5 occurrences of a string defined by r	(rrr rrrr rrrrr)
r+	One or more occurrences of a string defined by r	rr*

- ► DNA sequences: (A|C|G|T)*.
- ► *Identifiers:* [A-Za-z_] [A-Za-z0-9_]*.
- ▶ Phone numbers: $[2-9][0-9]\{2\} [2-9][0-9]\{2\} [0-9]\{4\}$.
- ► Dates: ((1[0-2])|[1-9])/(30|31|([12][0-9])|[1-9])/[1-9][0-9]{0,3}.
- ► US Postal Addresses: [0-9]+ [NSEW] {0,2} [A-Z] [a-z]* (St|Ave|Rd|Ln|Dr|Terr|Blvd), ([A-Z] [a-z]*)*, [A-Z] {2} [0-9] {5}.

Lord, you have been our dwelling place in all generations.

Coming up:

- Python warm-up assignment (Wed, Sept 3)
- ► Regular expressions quiz (Fri, Sept 5)
- ▶ Read Weizenbaum, excerpt from "Computer Power and Human Reason" (Fri, Sept 5)
- ► Read J&M, Section 2.9 (Mon, Sept 8)
- Regular expressions programming assignment (Mon, Sept 8)

Next time: Regular expression chatbot in the lab.