
I. Core / C. Advanced analysis techinques

▶ Limits of comparison-based sorting (last week Friday)

▶ Amortized analysis (today)

▶ (Begin dynamic programming Wednesday)

Today:

▶ General idea of amortization

▶ Aggregate method (aggregate analysis)

▶ Accounting method

▶ Potential method



amortize.
1: to pay off (an obligation, such as a mortgage) gradually usually by periodic
payments of principal and interest or by payments to a sinking fund
// amortize a loan

2: to gradually reduce or write off the cost or value of (something, such as an
asset)
// amortize goodwill
// amortize machinery

History and Etymology for amortize
Middle English amortisen to kill, alienate in mortmain, from Anglo-French
amorteser, alteration of amortir, from Vulgar Latin *admortire to kill, from
Latin ad- + mort-, mors death—more at MURDER

merriam-webster.com



that pays off interest

p
ay

m
en

t 
am

o
u
n

t

individual payment

that pays off principal

portion of payment

portion of payment



public interface Stack<E> {

void push(E item);

E top();

E pop();

boolean isEmpty();

}

public class MultipopStackDecorator<E> implements Stack<E> {

private Stack<E> internal;

public MultipopStackDecorator(Stack<E> internal) { this.internal = internal; }

public void push(E item) { internal.push(item); }

public E top() { return internal.top(); }

public E pop() { return internal.pop(); }

public boolean isEmpty() { return internal.isEmpty(); }

public void multipop(int k) {

for (; k > 0; k--) internal.pop();

}

}



multipop(n)
multipop(n)

· · ·
· · ·

multipop(n)
multipop(n)


n

push(n)
push(n)
· · ·
· · ·
push(n)

 n − 1

multipop(n)



public class BinaryCounter {

private boolean[] bits;

public BinaryCounter(int max) {

bits = new boolean[(int) Math.ceil(Math.lg(max))];

}

public increment() {

int i = 0;

while (i < bits.length && bits[i]) bits[i++] = false;

if (i < bits.legnth) bits[i] = true;

}

public read() {

int result = 0

for (int i = 0; i < bits.length; i++)

result += 1 << i;

return result;

}

}



operation 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

cost 1 2 1 4 1 1 1 8 1 1 1 1 1 1 1 16
running total 1 3 4 8 9 10 11 19 20 21 22 23 24 25 26 42



operation 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

cost 1 2 1 4 1 1 1 8 1 1 1 1 1 1 1 16
running total 1 3 4 8 9 10 11 19 20 21 22 23 24 25 26 42

The total is

n +
∑⌊lg n⌋

j=1 2j − ⌊lg n⌋ = n + 2⌊lg n⌋+1−2
2−1 − ⌊lg n⌋

= n + 2 · 2⌊lg n⌋ − 2− ⌊lg n⌋

≤ n + 2 · 2lg n

= n + 2n = 3n



Suppose you own a major soft drink company, and you have a million vending
machines in place around the country that are built to dispense bottles for a nickel.

What do you do when you need to increase the price of a bottle, say, to 6¢?

(a) Put up with decreasing profits for the next 50 years or so.

(b) Invest untold sums into replacing all vending machines.

(c) Lobby the government to recollect and destroy all nickels and then to issue a new
6¢ coin with the same weight and size as a nickel.

(d) Amortize the price increase by making every 6th bottle in the machines empty.



17.2-2. The idea is that for every operation, we should pay for itself and for all the
powers of two that follow it. Of course, we don’t know how many powers of 2 will be
executed. Instead, consider each operation to cost 3 units: one for itself, one counting
towards the next power of 2 (“next” is “inclusive”—it the operation is itself a power to
2, this contributes to its own real cost), and one to pay for an earlier (before the
previous power of 2, inclusive) operation’s contribution towards the next power of 2.
ĉi = 3. So,

n∑
i=1

ĉi = 3n ≥
n∑

i=1

ci

. . . where the last inequality was shown in 17.1-3.



Φ maps (the state of) a data structure to some value. Φ(D − i)− Φ(Di−1) represents
how the change in state from Di−1 to Di affects that value.

For the multi-pop stack, Φ(D) is the number of items in the stack.

For the binary counter, Φ(D) is the number of 1s.



17.3-2. For each operation, we want first to raise the potential by 3 (from the same
principle as before), but then also subtract the amount that is actually used up.

Φ(Di )− Φ(Di−1) =

{
3− i i is a power of 2
3− 1 = 2 otherwise

So, for non-powers-of-two,

ĉi = ci +Φ(Di )− Φ(Di−1) = 1 + (3− 1) = 1 + 2 = 3

For powers-of-two,

ĉi = ci +Φ(Di )− Φ(Di−1) = i + (3− i) = 3

. . . which concurs with our accounting-method analysis.



For next time

Read Sec 15.1.

(No daily work problems)

“Divide and Conquer” problem set due Wed, Sept 25.


