
I. Core / A. Correctness and efficiency of algorithms

▶ Review of algorithms, correctness, and efficiency (week-before Friday and last week
Wednesday)

▶ Asymptotics (last week Friday and today)

I. Core / B. Divide and Conquer

▶ General introduction (today)

▶ Solving recurrences (Wednesday)

▶ The master method (Friday)

▶ Quick sort (next week Monday)

Today:

▶ Review meaning and formal definition of big-Theta

▶ Theorem 3.1; Ex 3.1-(4 & 5)

▶ Properties of asymptotic notation

▶ Problem 3-1.d

▶ Problem 3-4.(a,b,c)

▶ Common functions (Section 3.2)

▶ Begin divide and conquer (Section 4.1)



Formal definition of big-Theta:

Θ(g(n)) = {f (n) | ∃ c1, c2, n0 ∈ N such that ∀ n ≥ n0, 0 ≤ c1g(n) ≤ f (n) ≤ c2g(n)}



g(n) = 1
2n

2 − 3n = Θ(n2).

Proof. Let c1 =
1
14 , c2 =

1
2 and n0 = 7. Suppose n > 7. Then

1
14 = 1

2 − 3
7 < 1

2

1
14 ≤ 1

2 − 3
n ≤ 1

2

n2

14 ≤ 1
2n

2 − 3n ≤ n2

2

c1n
2 ≤ g(n) ≤ c2n

2

Therefore g(n) = Θ(n2) by definition. □



Formal definitions:

Θ(g(n)) = {f (n) | ∃ c1, c2, n0 ∈ R+ such that ∀ n ≥ n0, 0 ≤ c1g(n) ≤ f (n) ≤ c2g(n)}

O(g(n)) = {f (n) | ∃ c , n0 ∈ R+ such that ∀ n ≥ n0, 0 ≤ f (n) ≤ c g(n)}

Ω(g(n)) = {f (n) | ∃ c , n0 ∈ R+ such that ∀ n ≥ n0, 0 ≤ c g(n) ≤ f (n) }

o(g(n)) = {f (n) | ∀ c ∈ R+, ∃ n0 ∈ R+ such that ∀ n ≥ n0, 0 ≤ f (n) < c g(n) }

ω(g(n)) = {f (n) | ∀ c ∈ R+,∃ n0 ∈ R+ such that ∀ n ≥ n0, 0 ≤ c g(n) < f (n) }



Theorem 3.1. For any two functions f (n) and g(n), we have f (n) = Θ(g(n)) iff
f (n) = O(g(n)) and f (n) = Ω(g(n)).



Theorem 3.1. For any two functions f (n) and g(n), we have f (n) = Θ(g(n)) iff
f (n) = O(g(n)) and f (n) = Ω(g(n)).

Proof. Suppose f = Θ(g(n)). Then, by definition of Θ, there exist constants
c1, c2, and n0 such that for all n ≥ n0,

0 ≤ c1g(n) ≤ f (n) ≤ c2g(n)

Let c = c2. Then 0 ≤ f (n) ≤ c · g(n), hence f (n) = O(g(n)) by definition.
Similarly, let c = c1. Then 0 ≤ c · g(n), hence f (n) = Ω(g(n)).

Conversely, suppose f (n) = O(g(n)) and f (n) = Ω(g(n)). By the definitions,
there exist c , and n1 such that for all n ≥ n1, 0 ≤ f (n) ≤ c · g(n), and there
exist c ′, and n′1 such that for all n ≥ n′1, 0 ≤ c ′ · g(n) ≤ f (n).
Let c1 = c ′, c2 = c , and n0 = max(n1, n

′
1). Hence f (n) = Θ(g(n)). □



3.1-4. Is 2n+1 = O(2n)? Is 22n = O(2n)?

To see that 2n+1 = O(2n), note that 2n+1 = 2 · 2n. Thus 2 is the constant we’re
looking for, and we’re done.

Let’s attempt a proof that 22n = O(2n). Does ∃ c, n0 | ∀ n ≤ n0, 2
2n ≤ c · 2n? If so,

then

2n · 2n ≤ c · 2n
2n ≤ c

. . . which is impossible.



3.1-4. Is 2n+1 = O(2n)? Is 22n = O(2n)?

To see that 2n+1 = O(2n), note that 2n+1 = 2 · 2n. Thus 2 is the constant we’re
looking for, and we’re done.

Let’s attempt a proof that 22n = O(2n). Does ∃ c, n0 | ∀ n ≤ n0, 2
2n ≤ c · 2n? If so,

then

2n · 2n ≤ c · 2n
2n ≤ c

. . . which is impossible.



3-1.d. If k > d , then p(n) = o(nk).

Proof. Suppose k > d and suppose c > 0. Then

a0 + a1n + . . .+ adn
d < ax + axn + . . .+ axn

d where ax = max(a0, a1, . . . ad)

< d · axnd (see why I chose ax instead of am?)

< c · nk if n is big enough.

So, we want d · ax < c · nk−d . This holds as long as

n >

(
d · ax
c

) 1
k−d



If f (n) = O(g(n)) and lg(g(n)) ≥ 1 and f (n) ≥ 1 for sufficiently large n, then
lg(f (n)) = O(lg(g(n)).

Scratch work: We need a d such that

lg c + lg g(n) ≤ d lg g(n)

d ≥ lg c

lg g(n)
+ lg g(n)

lg g(n)

≥ lg c + 1
(lg c + 1)lg g(n) = lg c · lg g(n) + lg g(n)

Proof. Suppose f (n) = O(g(n)). Then there exist c, n0 such that for all
n > n0, f (n) ≤ c · g(n). Then

lg f (n) ≤ lg c g(n) since lg is increasing
≤ lg c + lg g(n) by log property
≤ lg c · lg g(n) + lg g(n) Since lg g(n) ≥ 1
≤ (lg c + 1) · lg g(n)

Thus for n > n0, lg(f (n)) ≤ (lg c + 1) lg(g(n)).



Big “morals” of §4.(1 & 2)

▶ Many problems have good divide and conquer solutions. The running time of a
divide and conquer algorithm can be captured by a recurrence. So, let’s make sure
we can do recurrences.

▶ Sometimes it’s divide-and-conquer even when it doesn’t seem like it is.

▶ “Solving” a recurrence means finding an equivalent non-recursive formula.



“Normal” math induction:

“Normal” math induction:
I (0)
I (n) → I (n + 1)

∴ ∀ n ∈ N, I (n)

“Strong” math induction:
I (0)
(∀ i ≤ n, I (i)) → I (n + 1)

∴ ∀ n ∈ N, I (n)



For next time

Read sections 4.(2 & 3). When reading about Strassen’s method in Section
4.2, don’t get bogged down in the details of matrix multiplication. If you are
getting tired by pg 79, then skip ahead to the next section. It’s much more
important to give Section 4.3 your full attention.

Do 4.3-(1,2,9)


