
I. Core / A. Correctness and efficiency of algorithms

▶ Review of algorithms, correctness, and efficiency (last week Friday and this past
Wednesday)

▶ Asymptotics (today and next week Monday)

Today:

▶ Introduce first problem set

▶ Problem 2-3 (daily work included part c)

▶ Meaning of asymptotic notation

▶ Theorem 3.1; Ex 3.1-(4 & 5)

▶ Properties of asymptotic notation



2-3. Horner’s rule for evaluating a polynomial:

P(X ) =
n∑

k=0

akx
k

= a0 + x(a1 + x(a2 + · · · x(an−1 + xan) · · · ))

a. Θ(n).
b. What’s the näıve way? How näıve?

y = 0
z = 1
i = 0
while i ≤ n

y = y + ai · z
z = z · x
i = i + 1

z keeps a running power of x . If we were computing xn froms
scratch, this would make each exponentiation Θ(n), so we would
have Θ(n2) total. (However, the book does say on pg 24 that
we can assume exponentiation with small integer exponents are
constant time.)
Both the given and my way are Θ(n). The difference is in the
constant: 3 ops and 2 assignments vs 4 ops and 3 assignments.



Proof of Horner’s rule loop invariant

y =

n−(i+1)∑
k=0

ak+i+1x
k

:

Init. After 0 iterations, y = 0, i = n by assignment. So

n−(i+1)∑
k=0

ak+i+1 =
−1∑
k=0

ak+i+1x
k = 0 = y

Maint. Now, suppose this holds true after N iterations, that is

yold =

n−(iold+1)∑
k=0

ak+iold+1x
k

where yold and iold are y and i after N iterations. Likewise, let ynew and inew
be the values after N + 1 iterations.



By assignment inew = iold − 1. Then

ynew = aiold + x · yold by assignment

= aiold + x ·
∑n−(iold+1)

k=0 ak+iold+1x
k

= ainew+1 + x ·
∑n−(inew+2)

k=0 ak+inewx
k by substitution

= ainew+1 +
∑n−(inew+2)

k=0 ak+inewx
k+1 by distribution

= ainew+1 +
∑n−(inew+1)

k=1 ak+inew+1x
k by change of variables

= ainew+1x
0 +

∑n−(inew+1)
k=1 ak+inew+1x

k

=
∑n−(inew+1)

k=0 ak+inew+1x
k □



Formal definition of big-Theta:

Θ(g(n)) = {f (n) | ∃ c1, c2, n0 ∈ N such that ∀ n ≥ n0, 0 ≤ c1g(n) ≤ f (n) ≤ c2g(n)}



g(n) = 1
2n

2 − 3n = Θ(n2).

Proof. Let c1 =
1
14 , c2 =

1
2 and n0 = 7. Suppose n > 7. Then

1
14 = 1

2 − 3
7 < 1

2

1
14 ≤ 1

2 − 3
n ≤ 1

2

n2

14 ≤ 1
2n

2 − 3n ≤ n2

2

c1n
2 ≤ g(n) ≤ c2n

2

Therefore g(n) = Θ(n2) by definition. □



Theorem 3.1. For any two functions f (n) and g(n), we have f (n) = Θ(g(n)) iff
f (n) = O(g(n)) and f (n) = Ω(g(n)).



Theorem 3.1. For any two functions f (n) and g(n), we have f (n) = Θ(g(n)) iff
f (n) = O(g(n)) and f (n) = Ω(g(n)).

Proof. Suppose f = Θ(g(n)). Then, by definition of Θ, there exist constants
c1, c2, and n0 such that for all n ≥ n0,

0 ≤ c1g(n) ≤ f (n) ≤ c2g(n)

Let c = c2. Then 0 ≤ f (n) ≤ c · g(n), hence f (n) = O(g(n)) by definition.
Similarly, let c = c1. Then 0 ≤ c · g(n), hence f (n) = Ω(g(n)).

Conversely, suppose f (n) = O(g(n)) and f (n) = Ω(g(n)). By the definitions,
there exist c, and n1 such that for all n ≥ n1, 0 ≤ f (n) ≤ c · g(n), and there
exist c ′, and n′1 such that for all n ≥ n′1, 0 ≤ c ′ · g(n) ≤ f (n).
Let c1 = c ′, c2 = c, and n0 = max(n1, n

′
1). Hence f (n) = Θ(g(n)). □



3.1-4. Is 2n+1 = O(2n)? Is 22n = O(2n)?

To see that 2n+1 = O(2n), note that 2n+1 = 2 · 2n. Thus 2 is the constant we’re
looking for, and we’re done.

Let’s attempt a proof that 22n = O(2n). Does ∃ c, n0 | ∀ n ≤ n0, 2
2n ≤ c · 2n? If so,

then

2n · 2n ≤ c · 2n
2n ≤ c

. . . which is impossible.



3.1-4. Is 2n+1 = O(2n)? Is 22n = O(2n)?

To see that 2n+1 = O(2n), note that 2n+1 = 2 · 2n. Thus 2 is the constant we’re
looking for, and we’re done.

Let’s attempt a proof that 22n = O(2n). Does ∃ c, n0 | ∀ n ≤ n0, 2
2n ≤ c · 2n? If so,

then

2n · 2n ≤ c · 2n
2n ≤ c

. . . which is impossible.



For next time

Do Problems 3-1.d and 3-4.(a,b,c)

Read Section 4.1


