l. Core / A. Correctness and efficiency of algorithms

» Review of algorithms, correctness, and efficiency (last week Friday and this past
Wednesday)

» Asymptotics (today and next week Monday)

Today:

» Introduce first problem set
Problem 2-3 (daily work included part c)
Meaning of asymptotic notation
Theorem 3.1; Ex 3.1-(4 & 5)

>
>
>
» Properties of asymptotic notation



2-3. Horner's rule for evaluating a polynomial:

P(X)

a. ©(n).

n
- Yo
k=0

= ao+x(a1 +x(a2+---x(ap-1+xan)---))

b. What's the naive way? How naive?

y=0

z=1

i=0

while i <n
y=y+a-z
z=2z-x
i=i+1

z keeps a running power of x. If we were computing x” froms
scratch, this would make each exponentiation ©(n), so we would
have ©(n?) total. (However, the book does say on pg 24 that
we can assume exponentiation with small integer exponents are
constant time.)

Both the given and my way are ©(n). The difference is in the
constant: 3 ops and 2 assignments vs 4 ops and 3 assignments.



n—(i+1)
y . . _ k
Proof of Horner's rule loop invariant | y = Z Akti+1X
k=0
Init. After 0 iterations, y =0, i = n by assignment. So

n—(i+1) -1
R . k _ 0=
Ak4i+1 = dkti+1X =U=Yy
k=0 k=0

Maint. Now, suppose this holds true after N iterations, that is

n—(ioyg+1)

k
Yold = Z Fh+igg+1X
k=0
where yoiq and gy are y and i after N iterations. Likewise, let Ve, and inew
be the values after N + 1 iterations.



By assignment inen = i — 1. Then

Ynew = diyy T X Yold by assignment
_ n—(iojgt1) _ k
= Aigg T X 2ik=0 Fktiglgt1X
—(inew—+2 Lo
= Qipen+1 +X- Z:E;”eW* ) AktinewX by substitution
2 .
= Qipew+1 T Z K '"eWJr ) ak+,',,eka+1 by distribution
_ (inew+1) ) k by ch £ 2b)
= Ainewtl + D op_i Ak+inew+1X y change of variables

)

— 4. 0 n—(inew+1 ) k
- a'new+1X + Zk:l ak+lnew+lx

_ n—(inew+1) k
- Zk:O Ak+inew+1X g



Formal definition of big-Theta:

©(g(n)) ={f(n) | 3 c1,c2,np € Nsuch that V n > ng,0 < c1g(n) < f(n) < cg(n)}



g(n) =1n? —3n=0(n?).
Proof. Let ¢; = ﬁ, o= % and ngp = 7. Suppose n > 7. Then

o= 377<3

w S 1. <2

IR U

an® < g(n) < on

Therefore g(n) = ©(n?) by definition. [J



Theorem 3.1. For any two functions f(n) and g(n), we have f(n) = ©(g(n)) iff
f(n) = O(g(n)) and f(n) = Q(g(n)).



Theorem 3.1. For any two functions f(n) and g(n), we have f(n) = ©(g(n)) iff
f(n) = O(g(n)) and f(n) = Q(g(n)).

Proof. Suppose f = ©(g(n)). Then, by definition of ©, there exist constants
c1, ¢, and ng such that for all n > ng,

0 < c1g(n) < £(n) < cog(n)

Let c = cp. Then 0 < f(n) < c-g(n), hence f(n) = O(g(n)) by definition.
Similarly, let ¢ = ¢1. Then 0 < c - g(n), hence f(n) = Q(g(n)).

Conversely, suppose f(n) = O(g(n)) and f(n) = Q(g(n)). By the definitions,
there exist ¢, and ny such that for all n > ny, 0 < f(n) < c- g(n), and there
exist ¢/, and n} such that for all n > nl, 0 < ¢’ - g(n) < f(n).

Let c; = ¢, @ = ¢, and ng = max(n1, n}). Hence f(n) = ©(g(n)). O



3.1-4. Is 21 =
s 2™ = 0(2M)7 Is 22" = O(2")?



3.1-4. Is 271 = O(2")7 Is 227 = O(2")?
To see that 2771 = O(2"), note that 2"+1 = 2.27 Thus 2 is the constant we're
looking for, and we're done.

Let's attempt a proof that 22" = O(2"). Does 3 ¢, ng | V n < ng, 22" < ¢ -2"? If so,
then

2m.2n
2”

c-2"
c

VARV

... which is impossible.



For next time

Do Problems 3-1.d and 3-4.(a,b,c)
Read Section 4.1



