Languages and automata (Chapters 2—-4)
A hierarchy of models of computation
Nondeterminism
Turing machines
Problem set on automata (needs to be graded...)
Undecidability (Chapter 5)
Definition of undecidability
The Halting Problem
Reduction proofs
Problem set on undecidability proofs (due Wednesday after break)

NP-completeness (Chapters 6 and 7)

The class P, definition of tractability (§6.1)

Problems: Reachability , Euler cycle, Hamiltonian cycle, Traveling Salesman,
Independent Set, Clique, Node Cover, Integer Partition (§6.2)

Boolean Satisfiability (§6.3)

The class NP, N'P-completeness, and proofs (§6.4)

More problems, practice, and applications for N'P-completeness

Problem set on N'P-completeness (Due Thurs, Dec 12)

Schedule (recent and imminent)

Date Reading In class
Fri, Nov22 6 (whole chapter) Sections 5.(4,6,7),

Cinit ; 5 (1-8-2)
Mon, Nov 25 Reread 6.1 6.1 Definition of class P etc

Reread 6.2 through pg 282 6.2 REACHABILITY, HAMCYCLE

Mon, Dec 2 Reread rest of 6.2 6.2 TSP, INDEPENDENTSET
Reread 6.3 CLIQUE, PARTITION
6.3 Boolean satisfiability

Wed, Dec 4 Reread 6.4 6.4 The class NP
Read 7.2 7.1 Polynomial-time reductions

Definition 6.1.1: A Turing machine M is polynomially bounded if

3 p(n), a polynomial function such that
vV xeXlx
V C € (set of configurations), either
C is unreachable from (s,>Uw), or
(s,pUw) FK, C, where k < p(|x|)

A language is polynomially decidable if

3 M, a Turing machine that decides the language, such that
3 p(n), a polynomial function such that
V x € Xx*
V C € (set of configurations), either
C is unreachable from (s,>Lw), or
(s,oUw) FK, C, where k < p(|x|)

LP pg 276

Ex. 6.1.1

Proof of concatenation. Suppose L1, L, € P. Then there exist machines My and M,
that L; and Ly and are polynomially bounded by p1(n) and pa(n), respectively. Then
build a machine Mx that takes an input w of length m and does the following:

fori=0tom
simulate My(w[0..i/]) and Ma(w[i..m])
if both halt y, then halt y

halt n

Suppose r(n) is how long it takes to copy or restore the input. Then the number of
steps is bounded by

+Z (p1(7) + p2(m — 1)) < m- (r(m) + pi(m) + pa(m))

..which is polynomial.

§6.2. The class of polynomially decidable languages is denoted P. Why is polynomial
time used as a measure of tractability/feasibility?

DEFINE
"FEASIBLE "

NEVER MIND.
LET'S MOVE
ON.

Scott Adams, 1994

Reachability. Given a graph G and vertices v; and v;, find a path from v; to v;.
Language version: Does there exist a path from v; to v;?

{k(G)b(i)b(j) | 3 path in G from v; to v;}

One of the main points that will emerge from the discussion that follows is
that the precise details of encodings rarely matter.

Since it is easy to see that m = O(n%) , this is yet another inconsequential
inaccuracy, one that will not interfere with the issues that we deem important.

LP pg 280

Euler cycle. Given a graph G, is there a closed path (cycle) that uses each edge
exactly once? (Repeated vertices are okay.)
{k(G) | 3 a cycle that uses each edge exactly once}

Euler’s result: A graph has an Euler cycle if all non-isolated pairs are reachable and
each node’s in-degree equals its out-degree.

Hamiltonian Cycle. Given a graph G, is there a cycle that passes through each vertex
exactly once? (Unused edges are okay.)

{k(G) | 3 a cycle that visits each vertex exactly once}

Despite the superficial similarity between the two problems, Euler Cycle and
Hamiltonian Cycle, there appears to be a world of difference between them.
After one and a half centuries of scrutiny by many talented mathematicians,
no one has discovered a polynomial algorithm for Hamiltonian Cycle.

LP pg 282

Traveling Salesman. Given a complete weighted graph, find a simple cycle with with
least weight.

Optimization version: Given n € N and an n x n distance matrix d;;, and letting 7

range over permutations of {1,2,...n}, define ¢(7) = (27:_11 dﬂ(,-)m(,-ﬂ)) + dr(n)7(1)
Find pi to minimize c(m).

Budgeted version: Given n € N, an n x n distance matrix d;;, and B € W, and using 7
and c¢(m) as above, find a permutation 7 such that ¢(7) < B.

Language version:

{(n,d;j, B) | 3 7 such that ¢(7) < B}

For next time

Reread 6.2 starting with " Optimization Problems” on pg 282.

Think about TSP carefully. In a previous semester, no one had understood
TSP when they got to class—and, worse, they didn’t even realize they didn't
understand it.

Reread 6.3.
Do 6.3.2.

