
Languages and automata (Chapters 2–4)

A hierarchy of models of computation
Nondeterminism
Turing machines
Problem set on automata (needs to be graded. . . )

Undecidability (Chapter 5)

Definition of undecidability
The Halting Problem
Reduction proofs
Problem set on undecidability proofs (due Wednesday after break)

NP-completeness (Chapters 6 and 7)

The class P, definition of tractability (§6.1)
Problems: Reachability , Euler cycle, Hamiltonian cycle, Traveling Salesman,
Independent Set, Clique, Node Cover, Integer Partition (§6.2)
Boolean Satisfiability (§6.3)
The class NP, NP-completeness, and proofs (§6.4)
More problems, practice, and applications for NP-completeness
Problem set on NP-completeness (Due Thurs, Dec 12)



Schedule (recent and imminent)
Date Reading In class

Fri, Nov 22 6 (whole chapter) Sections 5.(4,6,7),
definitions from 6.(1 & 2)

Mon, Nov 25 Reread 6.1 6.1 Definition of class P etc
Reread 6.2 through pg 282 6.2 Reachability, HamCycle

Mon, Dec 2 Reread rest of 6.2 6.2 TSP, IndependentSet
Reread 6.3 Clique, Partition

6.3 Boolean satisfiability

Wed, Dec 4 Reread 6.4 6.4 The class NP
Read 7.2 7.1 Polynomial-time reductions



Definition 6.1.1: A Turing machine M is polynomially bounded if

∃ p(n), a polynomial function such that
∀ x ∈ Σ*

∀ C ∈ (set of configurations), either
C is unreachable from (s, ▷⊔w), or
(s, ▷⊔w) ⊢k

M C , where k ≤ p(|x |)

A language is polynomially decidable if

∃ M, a Turing machine that decides the language, such that
∃ p(n), a polynomial function such that

∀ x ∈ Σ*
∀ C ∈ (set of configurations), either

C is unreachable from (s, ▷⊔w), or
(s, ▷⊔w) ⊢k

M C , where k ≤ p(|x |)

LP pg 276



Ex. 6.1.1
Proof of concatenation. Suppose L1, L2 ∈ P. Then there exist machines M1 and M2

that L1 and L2 and are polynomially bounded by p1(n) and p2(n), respectively. Then
build a machine M∗ that takes an input w of length m and does the following:

for i = 0 to m
simulate M1(w [0..i ]) and M2(w [i ..m])
if both halt y , then halt y

halt n

Suppose r(n) is how long it takes to copy or restore the input. Then the number of
steps is bounded by

m · r(m) +
m∑
i=1

(p1(i) + p2(m − i)) ≤ m · (r(m) + p1(m) + p2(m))

. . . which is polynomial.



.

§6.2. The class of polynomially decidable languages is denoted P. Why is polynomial
time used as a measure of tractability/feasibility?

Scott Adams, 1994



Reachability. Given a graph G and vertices vi and vj , find a path from vi to vj .

Language version: Does there exist a path from vi to vj?

{κ(G )b(i)b(j) | ∃ path in G from vi to vj}

One of the main points that will emerge from the discussion that follows is
that the precise details of encodings rarely matter.

Since it is easy to see that m = O(n3) , this is yet another inconsequential
inaccuracy, one that will not interfere with the issues that we deem important.
LP pg 280



Euler cycle. Given a graph G , is there a closed path (cycle) that uses each edge
exactly once? (Repeated vertices are okay.)

{κ(G ) | ∃ a cycle that uses each edge exactly once}

Euler’s result: A graph has an Euler cycle if all non-isolated pairs are reachable and
each node’s in-degree equals its out-degree.



Hamiltonian Cycle. Given a graph G , is there a cycle that passes through each vertex
exactly once? (Unused edges are okay.)

{κ(G ) | ∃ a cycle that visits each vertex exactly once}

Despite the superficial similarity between the two problems, Euler Cycle and
Hamiltonian Cycle, there appears to be a world of difference between them.
After one and a half centuries of scrutiny by many talented mathematicians,
no one has discovered a polynomial algorithm for Hamiltonian Cycle.
LP pg 282



Traveling Salesman. Given a complete weighted graph, find a simple cycle with with
least weight.

Optimization version: Given n ∈ N and an n × n distance matrix di ,j , and letting π

range over permutations of {1, 2, . . . n}, define c(π) =
(∑n−1

i=1 dπ(i),π(i+1)

)
+ dπ(n),π(1)

Find pi to minimize c(π).

Budgeted version: Given n ∈ N, an n× n distance matrix di ,j , and B ∈ W, and using π
and c(π) as above, find a permutation π such that c(π) ≤ B.

Language version:

{(n, di ,j ,B) | ∃ π such that c(π) ≤ B}



For next time

Reread 6.2 starting with ”Optimization Problems” on pg 282.

Think about TSP carefully. In a previous semester, no one had understood
TSP when they got to class—and, worse, they didn’t even realize they didn’t
understand it.

Reread 6.3.

Do 6.3.2.


