I. Core / C. Advanced analysis techinques

- Limits of comparison-based sorting (today)
- Amortized analysis (next week Monday)
- (Begin dynamic programming next week Wednesday)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Today:

- Proof of Theorem 8.1
- Exercises from Section 8.1
- Get head start on amortized analysis

Meme from https://www.pinterest.com/pin/561542647262613858/

You can't comparison-sort in linear time. But there are alternatives to comparisons. **Theorem 8.1.** For any comparison-based sorting algorithm, the worst-case number of comparisons is $\Omega(n \lg n)$.

Proof. For sequences of size n, there are n! permutations, each of which are possible outcomes. Consider the decision tree where each node is a comparison between two array positions.

Let ℓ be the number of leaves and h the height of the tree. And so

 $n! \leq \ell$ since every permutation must be a leaf

 $\ell \leq 2^h$ since a tree can't have more than 2^h leaves

$$\begin{array}{rcl} h & \geq & \lg n! \\ & = & \Theta(n \lg n) & \text{by eq 3.19 in CLRS} \end{array}$$

Hence $h = \Omega(n \lg n)$, and thus there must be a permutation reachable by no less than $\Omega(n \lg n)$ comparisons. \Box

8.1-3.a. Can a comparison-based sorting algorithm have linear running time for at least half the inputs of size n?

Suppose so, that is, suppose there exists a c such that for $\frac{n!}{2}$ of the items, their path is fewer than cn links. This means that in the portion of the tree less than cn links from the root, there are $\frac{n!}{2}$ leaves. In fact, the most possible leaves are 2^{cn} . Thus,

$$\begin{array}{rcl} \frac{n!}{2} & \leq & 2^{cn} & & & |g(n!) & \leq & cn+1 \\ \\ n! & \leq & 2^{cn+1} & & & c & \geq & \frac{|g(n!)}{n} - \frac{1}{n} \end{array}$$

Since $\lg(n!) = \Omega(n \lg n)$, there exists a d such that $\lg(n!) \ge dn \lg n$.

$$c \geq rac{\lg(n!)}{n} - rac{1}{n} \geq rac{dn\lg n}{n} - rac{1}{n} = d\lg n - rac{1}{n}$$

 $\frac{1}{n}$ approaches 0 and $d \lg n$ approaches ∞ (slowly). So, c cannot be a constant. Alternately, let h_1 be the the pseduo-height encompasing the closest $\frac{n!}{2}$ leaves. Observe that $\frac{n!}{2} \leq 2^{h_1}$, and so

$$h_1 \ge \lg n! - 1 = \Omega(n \lg n)$$

8.1-3.b. Can a comparison-based sorting algorithm have linear running time for $\frac{1}{n}$ of the inputs of size *n*?

Suppose so. Then

$$\frac{n!}{n} \leq 2^{cn}$$

$$\lg(n!) - \lg n \le cn$$

$$c \geq rac{\lg(n!) - \lg n}{n} \geq rac{dn \lg n}{n} \geq d \lg n - rac{\lg n}{n}$$

Since the $\frac{\lg n}{n}$ term approaches 0, the last expression is increasing. Hence *c* is not constant.

Alternately, $\frac{n!}{n} \leq 2^{h_2}$, so

$$h_2 \ge \lg n! - \lg n = \Omega(n \lg n)$$

8.1-3.c. Can a comparison-based sorting algorithm have linear running time for $\frac{1}{2^n}$ of the inputs of size *n*?

Suppose so. Then

$$\begin{array}{rcl} \frac{n!}{2^n} &\leq& 2^{cn} \\ n! &\leq& 2^{(c+1)n} \\ \lg(n!) &\leq& (c+1)n \\ c &\geq& \frac{\lg(n!)}{n}-1 \\ &\geq& \frac{dn\lg n}{n}-1 \\ &=& d\lg n-1 \end{array}$$

Alternately, $\frac{n!}{2^n} \leq 2^{h_3}$, so

$$h_3 \geq \lg n! - n = \Omega(n \lg n)$$

・ロト・西ト・ヨト・ヨー うへで

8.1-4. The number of permutations is $\underbrace{k! \cdot k! \dots k!}_{\frac{n}{k}}$, that is, $(k!)^{\frac{n}{k}}$. For a decision tree of height h, $(k!)^{\frac{n}{k}} \leq 2^{h}$. So,

 $h \geq \lg((k!)^{\frac{n}{k}})$

$$= \frac{n}{k} \lg(k!)$$

$$= \frac{n}{k} dk \log k$$
 for some d

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

$$= dn \lg k$$

Hence $\Omega(n \lg k)$.

For next time

Read Sec 17.(1-3).

Do 17.1-(1 & 3) and 17.2-2.

"Divide and Conquer" problem set due Wed, Sept 25.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ