
I. Core / C. Advanced analysis techinques

▶ Limits of comparison-based sorting (today)

▶ Amortized analysis (next week Monday)

▶ (Begin dynamic programming next week Wednesday)

Today:

▶ Proof of Theorem 8.1

▶ Exercises from Section 8.1

▶ Get head start on amortized analysis



You can’t
comparison-sort
in linear time.
But there are
alternatives to
comparisons.

Meme from https://www.pinterest.com/pin/561542647262613858/



Theorem 8.1. For any comparison-based sorting algorithm, the worst-case number of
comparisons is Ω(n lg n).

Proof. For sequences of size n, there are n! permutations, each of which are
possible outcomes. Consider the decision tree where each node is a comparison
between two array positions.
Let ℓ be the number of leaves and h the height of the tree. And so

n! ≤ ℓ since every permutation must be a leaf

ℓ ≤ 2h since a tree can’t have more than 2h leaves

h ≥ lg n!
= Θ(n lg n) by eq 3.19 in CLRS

Hence h = Ω(n lg n), and thus there must be a permutation reachable by no
less than Ω(n lg n) comparisons. □



8.1-3.a. Can a comparison-based sorting algorithm have linear running time for at
least half the inputs of size n?

Suppose so, that is, suppose there exists a c such that for n!
2 of the items, their path is

fewer than cn links. This means that in the portion of the tree less than cn links from
the root, there are n!

2 leaves. In fact, the most possible leaves are 2cn. Thus,
n!
2 ≤ 2cn

n! ≤ 2cn+1

lg(n!) ≤ cn + 1

c ≥ lg(n!)
n − 1

n

Since lg(n!) = Ω(n lg n), there exists a d such that lg(n!) ≥ dn lg n.

c ≥ lg(n!)

n
− 1

n
≥ dn lg n

n
− 1

n
= d lg n − 1

n
1
n approaches 0 and d lg n approaches ∞ (slowly). So, c cannot be a constant.

Alternately, let h1 be the the pseduo-height encompasing the closest n!
2 leaves.

Observe that n!
2 ≤ 2h1 , and so

h1 ≥ lg n!− 1 = Ω(n lg n)



8.1-3.b. Can a comparison-based sorting algorithm have linear running time for 1
n of

the inputs of size n?

Suppose so. Then

n!

n
≤ 2cn

lg(n!)− lg n ≤ cn

c ≥ lg(n!)− lg n

n
≥ dn lg n

n
≥ d lg n − lg n

n

Since the lg n
n term approaches 0, the last expression is increasing. Hence c is not

constant.
Alternately, n!

n ≤ 2h2 , so

h2 ≥ lg n!− lg n = Ω(n lg n)



8.1-3.c. Can a comparison-based sorting algorithm have linear running time for 1
2n of

the inputs of size n?

Suppose so. Then

n!
2n ≤ 2cn

n! ≤ 2(c+1)n

lg(n!) ≤ (c + 1)n

c ≥ lg(n!)
n − 1

≥ dn lg n
n − 1

= d lg n − 1

Alternately, n!
2n ≤ 2h3 , so

h3 ≥ lg n!− n = Ω(n lg n)



8.1-4. The number of permutations is k! · k! . . . k!︸ ︷︷ ︸
n
k

, that is, (k!)
n
k .

For a decision tree of height h, (k!)
n
k ≤ 2h. So,

h ≥ lg((k!)
n
k )

= n
k lg(k!)

= n
k dk lg k for some d

= dn lg k

Hence Ω(n lg k).



For next time

Read Sec 17.(1-3).

Do 17.1-(1 & 3) and 17.2-2.

“Divide and Conquer” problem set due Wed, Sept 25.


