I. Core / C. Advanced analysis techinques

- ▶ Limits of comparison-based sorting (today)
- ▶ Amortized analysis (next week Monday)
- ▶ (Begin dynamic programming next week Wednesday)

KORK EXTERNE PROVIDE

Today:

- ▶ Proof of Theorem 8.1
- ▶ Exercises from Section 8.1
- ▶ Get head start on amortized analysis

Meme from https://www.pinterest.com/pin/561542647262613858/

You can't comparison-sort in linear time. But there are alternatives to comparisons.

Theorem 8.1. For any comparison-based sorting algorithm, the worst-case number of comparisons is $Ω(n \lg n)$.

Proof. For sequences of size n, there are n! permutations, each of which are possible outcomes. Consider the decision tree where each node is a comparison between two array positions.

Let ℓ be the number of leaves and h the height of the tree. And so

 $n!$ \lt ℓ since every permutation must be a leaf

 $\ell \leq 2^h$ since a tree can't have more than 2^h leaves

$$
h \geq \lg n!
$$

= $\Theta(n \lg n)$ by eq 3.19 in CLRS

Hence $h = \Omega(n \lg n)$, and thus there must be a permutation reachable by no less than $\Omega(n \lg n)$ comparisons. \square

8.1-3.a. Can a comparison-based sorting algorithm have linear running time for at least half the inputs of size n?

Suppose so, that is, suppose there exists a c such that for $\frac{n!}{2}$ of the items, their path is fewer than cn links. This means that in the portion of the tree less than cn links from the root, there are $\frac{n!}{2}$ leaves. In fact, the most possible leaves are 2^{cn} . Thus,

$$
\frac{n!}{2} \leq 2^{cn} \qquad \qquad \lg(n!) \leq cn+1
$$
\n
$$
n! \leq 2^{cn+1} \qquad \qquad c \geq \frac{\lg(n!)}{n} - \frac{1}{n}
$$

Since $\lg(n!) = \Omega(n \lg n)$, there exists a d such that $\lg(n!) \geq dn \lg n$.

$$
c \geq \frac{\lg(n!)}{n} - \frac{1}{n} \geq \frac{dn \lg n}{n} - \frac{1}{n} = d \lg n - \frac{1}{n}
$$

1 $\frac{1}{n}$ approaches 0 and *d* lg *n* approaches ∞ (slowly). So, *c* cannot be a constant. Alternately, let h_1 be the the pseduo-height encompasing the closest $\frac{n!}{2}$ leaves. Observe that $\frac{n!}{2} \leq 2^{h_1}$, and so

$$
h_1\geq \lg n!-1=\Omega(n\lg n)
$$

8.1-3.b. Can a comparison-based sorting algorithm have linear running time for $\frac{1}{n}$ of the inputs of size n?

Suppose so. Then

$$
\frac{n!}{n}\leq 2^{cn}
$$

$$
\lg(n!) - \lg n \leq cn
$$

$$
c \geq \frac{\lg(n!)-\lg n}{n} \geq \frac{dn \lg n}{n} \geq d \lg n - \frac{\lg n}{n}
$$

Since the $\frac{\lg n}{n}$ term approaches 0, the last expression is increasing. Hence c is not constant.

Alternately, $\frac{n!}{n} \leq 2^{h_2}$, so

$$
h_2 \geq \lg n! - \lg n = \Omega(n \lg n)
$$

8.1-3.c. Can a comparison-based sorting algorithm have linear running time for $\frac{1}{2^n}$ of the inputs of size n?

Suppose so. Then

$$
\frac{n!}{2^n} \leq 2^{cn}
$$
\n
$$
n! \leq 2^{(c+1)n}
$$
\n
$$
\lg(n!) \leq (c+1)n
$$
\n
$$
c \geq \frac{\lg(n!)}{n} - 1
$$
\n
$$
\geq \frac{dn \lg n}{n} - 1
$$
\n
$$
= d \lg n - 1
$$

Alternately, $\frac{n!}{2^n} \leq 2^{h_3}$, so

$$
h_3 \geq \lg n! - n = \Omega(n \lg n)
$$

KID KA KE KIEK E VA G

8.1-4. The number of permutations is $k! \cdot k! \dots k!$ $\frac{n}{k}$, that is, $(k!)^{\frac{n}{k}}$. For a decision tree of height h, $(k!)^{\frac{n}{k}} \leq 2^h$. So,

 $h \geq \lg((k!)^{\frac{n}{k}})$

$$
= \frac{n}{k} \lg(k!)
$$

$$
= \frac{n}{k} dk \lg k \quad \text{for some } d
$$

KORKARA REPASA DA VOCA

$$
= \ dh \lg k
$$

Hence $\Omega(n \lg k)$.

For next time

Read Sec 17.(1-3).

Do 17.1-(1 & 3) and 17.2-2.

"Divide and Conquer" problem set due Wed, Sept 25.

KID KAR KE KAEK E YA G