
I. Core / A. Correctness and efficiency of algorithms

▶ Review of algorithms, correctness, and efficiency (last week Friday and today)

▶ Asyptotics (Friday and next week Monday)

Today:

▶ Take apart Section 2.3

▶ Exercise 2.3-7: Anatomy of a “complete” problem



Ex 2.3-3, rewritten.

Let T (n) be a function defined by the following recurrence:

T (n) =

{
2 if n = 2
2T

(
n
2

)
+ n if n = 2k for some k ∈ (1,∞)

Prove that ∀ k ∈ N, if n = 2k then T (n) = n lg n



From CLRS, pg 39:

Ex 2.3-7 Describe a Θ(n lg n)-time algorithm that, given a set S of n integers
and another integer x determines whether or not there exist two elements in
S whose sum is exactly x .



i j

Invariant (Loop of findPairSum)

After k ∈ W iterations,

(a) ∀ a ∈ [0, i), s[a] + s[j ] < x

(b) ∀ b ∈ (j , n), s[i ] + s[b] > x

(c) j − i = n − k − 1

Correctness Claim (findPairSum)

The method findPairSum returns two values in the given sequence that sum to x , if
any exist.



Proof. By induction on k , the number of iterations.

Initialization. Suppose k = 0 (before the loop starts). i = 0 and j = n − 1.
The two ranges [0, i) and (j , n) are empty, and so clauses (a) and (b) are
vacuously true. Moreover, j − i = n − 1− 0 = n − 0− 1 = n − k − 1.



Maintenance. Suppose the invariant is true after k iterations, for some k ≥ 0.
Suppose a k+1st iteration occurs. By the guard (which must have been true),
either S [i ] + S [j ] < x or S [i ] + S [j ] > x .

Suppose S [i ] + S [j ] < x . By the inductive hypothesis, for all a ∈ [0, i),
S [a] + S [j ] < x . Hence for all a ∈ [0, i + 1), S [a] + S [j ] < x . The invariant is
maintained after i is incremented.

The situation is similar if S [i ] + S [j ] > x .

Additionally, either i is incremented or j is decremented. In either case jnew −
inew = (jold − iold)− 1 = n − k − 1− 1 = n − (k + 1)− 1.

Hence the invariant holds after k + 1 iterations.



Termination. After n iterations, j − i = −1 so i > j . Hence the loop will
terminate after at most n iterations.

After the loop terminates, either i > j or S [i ] + S [j ] = x .

Suppose i > j . Then, by the loop invariant, no elements exist that sum to x ,
and the algorithm correctly returns None.

On the other hand, suppose S [i ] + S [j ] = x . Then the algorithm correctly
returns S [i ] and S [j ]. □



2-3. Horner’s rule for evaluating a polynomial:

P(X ) =
n∑

k=0

akx
k

= a0 + x(a1 + x(a2 + · · · x(an−1 + xan) · · · ))

a. Θ(n).
b. What’s the näıve way? How näıve?

y = 0
z = 1
i = 0
while i ≤ n

y = y + ai · z
z = z · x
i = i + 1

z keeps a running power of x . If we were computing xn froms
scratch, this would make each exponentiation Θ(n), so we would
have Θ(n2) total. (However, the book does say on pg 24 that
we can assume exponentiation with small integer exponents are
constant time.)
Both the given and my way are Θ(n). The difference is in the
constant: 3 ops and 2 assignments vs 4 ops and 3 assignments.



For next time

Read Chapter 3, focusing on difference among formal definitions in Section 3.1

Do Problem 2-3.c. Prove the given invariant.
Do Exercises 3.1-(4 & 5)

Also, you have enough to begin the problem set, which I’ll formally introduce next time.


