
I. Core / D. Dynamic programming and greedy algorithms

▶ Dynamic programming review and overview (today)

▶ Dynamic programming practice (Friday and next week Monday)

▶ Greedy algorithms (next week Wednesday and Friday, and week-after Monday)

Today:

▶ Why DP is important

▶ The “hero-hall” problem

▶ The rod-cutting problem (CLRS 15.1)

▶ Introduction of saw-mill problem



What dynamic programming is:
An algorithmic technique for efficiently solving an optimization problem with
overlapping subproblems by storing the results of subproblems in a table.

Goals for dynamic programming in CSCI 345:

▶ Know what dynamic programming is and what kind of problems it applies to.

▶ Understand the principles of dynamic programming and the terminology used to
talk about it.

▶ Be able to take a problem and its recursive characterization (the mathematical
formulation of its solution) and code up an algorithm to compute the maximum
value or minimum cost.

Goals for dynamic programming in CSCI 445:

▶ Be able to take a problem and devise a recursive characterization.

▶ Having devised a recursive characterization, be able to code up an algorithm to
compute the maximum value or minimum cost and to reconstruct the optimal
solution.



You are playing a computer game in which the hero must
pass through a series of rooms and halls collecting trea-
sure. There are 2n rooms (in pairs) and n − 1 halls in-
terspersed between the pairs. Each room has a one-way
door to the next hall, and each hall has two one-way doors
to the rooms of the next pair. The hero must, therefore,
pass through exactly one room in each pair.

Each room has a certain amount of treasure, Ti ,j . Halls
do not have treasure, but they each have a guardian who
demands payment to let the hero cross diagonally through
the hall. So, to move from Ti−1,0 to Ti ,0 is free, but to
move from Ti−1,0 to Ti ,1 costs Pi .

Devise and implement an algorithm to find the route that
yields the most treasure. Analyze its efficiency.
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Let

▶ Ti ,j be the amount of treasure in room i , j . (Given)

▶ Pi be the penalty for crossing the hall between the ith and i + 1st pair of rooms.
(Given)

▶ Ci ,j be the most treasure than can be obtained on any route ending at room i , j .
(“Scratch work”)

▶ Di ,j be the direction the hero should come from in order to get to room i , j with
the most treasure. (“Scratch work”)

▶ R be the route the hero should take, as a list indicating which side of the hall the
hero should be on. (Solution to be returned)

Throughout, variable i ranges over [0, n) and j ranges over [0, 2).

Ci ,j =


Ti ,j if i = 0

Ti ,j +max(Ci−1,j ,Ci−1,j+1%2 − Pi−1) otherwise



Why dynamic programming:

▶ Dynamic programming applies to optimization problems that have overlapping
subproblems.

▶ Dynamic programming avoid the bad running time of brute-force (“näıvely
recursive”) solutions by recording previously computed results in a table
(memoization)

The anatomy of the dynamic programming approach from the programmer’s
perspective (compare CLRS pg 359):

▶ Characterize the substructure: Determine what the subproblems are and how they
relate to the larger problem. (Determine the meaning of the tables.)

▶ Recursively define the problem.

▶ Devise an algorithm to populate the tables of subproblem solutions. (Find how
good the best way is.)

▶ Devise an algorithms to reconstruct a solution from the tables. (Find the best
way.)



The rod-cutting problem (CLRS pg 360):

Given a table of prices for rods of different lengths and a rod (that is, a length),
what is the most valuable way to cut up the rod into smaller rods?

Problem instance in the book:

length 1 2 3 4 5 6 7 8 9 10

price 1 5 8 9 10 17 17 20 24 30
density 1 2.5 2.66 2.25 2 2.83 2.43 2.5 2.66 3



Problem instance changed slightly:

length 1 2 3 4 5 6 7 8 9 10

price 1 5 8 9 10 17 17 20 24 29
density 1 2.5 2.66 2.25 2 2.83 2.43 2.5 2.66 2.9

Consider a given rod of length 14. How should we cut it?

Using the greedy strategy (price-densest first), we would do

10 3 1
29 + 8 + 1 = 38

But a better cutting is

6 6 2
17 + 17 + 5 = 39



Representation of the problem, and of an instance of the problem:

▶ n is the rod length. (Given)

▶ p is an array of prices, pi (or p[i ]) the price for a rod of length i . (Given)
▶ i1, i2, . . . ik is a way to cut up the rod, where

▶ k is the number of pieces the rod is cut into.
▶ iℓ is the length of a piece, where 1 ≤ ℓ ≤ k
▶ i1 + i2 + · · ·+ ik = n
▶ 1 ≤ k ≤ n
▶ k = 1 indicates no cuts at all
▶ k = n indicates cutting the rod into n pieces of unit length

In the previous example, i1 = 6, i2 = 6, i3 = 2.

▶ rn is the (best?) revenue for cutting a rod of length n, is calculated as

rn =
k∑

ℓ=1

p[i [ℓ]] =
k∑

ℓ=1

piℓ

▶ The solution is an array i of length k that maximizes r . (Solution to be returned)



An alternate formulation/representation is based on the position of cuts relative to the
end of the original rod.

i1 = 6 i2 = 6 i3 = 2
0 6 12 n = 14
j0 j1 j2 j3

jℓ =
ℓ∑

m=1

im = jℓ−1 + iℓ



From pg 362: We characterize the optimal substructure as

rn = max( pn
r1 + rn−1

r2 + rn−1
...
rx + rn−x
...
rn−1 + r1)



From pg 363: The näıve recursive version and why it’s bad.

T (n) = 1 +
n−1∑
j=0

T (j) = 2n

Verifying this using the substitution method (see Ex 15.1-1):

T (n) = 1 +
∑n−1

j=0 2j

= 1 + 1 + 2 + 4 + 8 + · · ·+ 2n−2 + 2n−1

= T (n − 1) + 2n−1

= 2n−1 + 2n−1

= 2 · 2n−1

= 2n



A lumberjack has an k-yard long log of wood he wants cut at n specific places j1, j2,
. . . jn, represented as the distance of that cut point from one end of the log. (We can
also consider the ends as trivial “cut points” j0 = 0 and jn+1 = k.) The sawmill
charges $x to cut a log that is x yards long (regardless of where that cut is). The
sawmill also allows the customer to specify the ordering and location of the cuts.
For example, if k = 20 and we want cuts at 3 yards, 6 yards, and 10 yards from the left
end, then if we cut them from left to right the cost would be

20 + (20− 3) + (20− 6) = 20 + 17 + 14 = 51

But making the same cuts from right to left would cost

20 + 10 + 6 = 36

Devise and implement an algorithm to minimize the cost, and analyze its running time.


