
I. Core / D. Dynamic programming and greedy algorithms

▶ Dynamic programming review and overview (last week Wednesday)

▶ Dynamic programming practice (last week Friday and today)

▶ Greedy algorithms (Wednesday, Friday, and next week Monday)

Today:

▶ Finish sawmill problem

▶ Work through company party problem

A lumberjack has an ℓ-yard long log of wood he wants cut at n specific places L1, L2,
. . . Ln, represented as the distance of that cut point from one end of the log. (We can
also consider the ends as trivial “cut points” L0 = 0 and Ln+1 = ℓ.) The sawmill
charges $x to cut a log that is x yards long (regardless of where that cut is). The
sawmill also allows the customer to specify the ordering and location of the cuts.
For example, if ℓ = 20 and we want cuts at 3 yards, 6 yards, and 10 yards from the left
end, then if we cut them from left to right the cost would be

20 + (20− 3) + (20− 6) = 20 + 17 + 14 = 51

But making the same cuts from right to left would cost

20 + 10 + 6 = 36

Devise and implement an algorithm to minimize the cost, and analyze its running time.

Don’t be greedy:

Let ℓ = 50 and L = [0, 23, 24, 25, 26, 27, 50]

X
0 23 24 25 26 27 50

Cutting in half: Trimming edges:
50 50
25 27
2 4
25 3
2 2

104 86

15-6 Professor Stewart is consulting for the president of a corporation that is planning
a company party. The company has a hierarchical structure; that is, the supervisor
relation forms a tree rooted at the president. The personnel office has ranked each
employee with a conviviality rating, which is a real number. In order to make the party
fun for all attendees, the president does not want both an employee and his or her
immediate supervisor to attend.

Professor Stewart is given the tree that describes the structure of the corporation using
the left-child right-sibling representation described in Section 10.4. Each node of the
tree holds, in addition to the pointers, the name of an employee and that employee’s
conviviality ranking. Describe an algorithm to make up a guest list that maximizes the
sum of the conviviality ratings of the guests. Analyze the running time of your
algorithm.

For next time:
Read Sec 16.(1&2).
(Nothing to turn in, but Ex 16.2-4 will be assigned for next time.)

