II. Topics / A. Fast Fourier transform

- Intoduction to premise and problem (Wednesday)
- The complex roots of unity (Today)
- ▶ FFT algorithm details (next week Friday, Oct 25)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Today:

- Review of problem and goals
- Divide-and-conquer polynomial evaluation
- The complex roots of unity

Lagrange's formula for interpolation: Given *n* points, $(x_0, y_0), \dots (x_{n-1}, y_{n-1})$,

$$A(x) = \sum_{k=0}^{n-1} y_k \frac{\prod_{j \neq k} (x - x_j)}{\prod_{j \neq k} (x_k - x_j)}$$

(ロ)、(型)、(E)、(E)、(E)、(O)()

 $e^{\pi i} = -1$

An *n*th complex root of unity is $\omega \in \mathbb{C}$ such that $\omega^n = 1$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

$$n = 3$$

$$1^{3} = 1$$

$$(e^{\frac{2\pi i}{3}})^{3} = (e^{\pi i})^{2} = (-1)^{2} = 1$$

$$(e^{\frac{4\pi i}{3}})^{3} = (e^{2\pi i})^{2} = (1)^{2} = 1$$

Moreover...

$$e^{\frac{2\pi i}{3}} = \cos(\frac{2}{3}\pi) + i\sin(\frac{2}{3}\pi) = -.5 + .866i$$

 $e^{\frac{4\pi i}{3}} = \cos(\frac{4}{3}\pi) + i\sin(\frac{4}{3}\pi) = -.5 - .866i$

In general, the principal nth root of unity is $\omega_n = e^{\frac{2\pi i}{n}}$

The *n* complex *n*th roots of unity are $\omega_n^0, \omega_n^1, \ldots, \omega_n^{n-1}$.

Note that $\omega_n = \omega_n^1$ and $\omega_n^0 = \omega_n^n = 1$.

Note also that $\omega_n^k = e^{\frac{2\pi i}{n}k} = e^{\frac{2k\pi i}{n}} = \cos(\frac{2k\pi}{n}) + i\sin(\frac{2k\pi}{n})$

Cancellation lemma. (30.3) For any integers $n \ge 0$, $k \ge 0$, and d > 0, $\omega_{dn}^{dk} = \omega_n^k$. **Proof.** $\omega_{dn}^{dk} = (\omega_{dn})^{dk} = (e^{\frac{2\pi i}{dn}})^{dk} = (e^{\frac{2\pi i}{n}})^k = \omega_n^k$. \Box

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うへつ

Corollary to above. (30.4) For any even integer n > 0, $\omega_n^{\frac{n}{2}} = \omega_2 = -1$ In general, the principal nth root of unity is $\omega_n = e^{\frac{2\pi i}{n}}$

The *n* complex *n*th roots of unity are $\omega_n^0, \omega_n^1, \dots, \omega_n^{n-1}$. Note that $\omega_n = \omega_n^1$ and $\omega_n^0 = \omega_n^n = 1$. Note also that $\omega_n^k = e^{\frac{2\pi i}{n}k} = e^{\frac{2k\pi i}{n}} = \cos(\frac{2k\pi}{n}) + i\sin(\frac{2k\pi}{n})$

Cancellation lemma. (30.3) For any integers $n \ge 0$, $k \ge 0$, and d > 0, $\omega_{dn}^{dk} = \omega_n^k$. **Proof.** $\omega_{dn}^{dk} = (\omega_{dn})^{dk} = (e^{\frac{2\pi i}{dn}})^{dk} = (e^{\frac{2\pi i}{n}})^k = \omega_n^k$.

Corollary to above. (30.4) For any even integer n > 0, $\omega_n^{\frac{n}{2}} = \omega_2 = -1$

Proof. Let *m* be such that n = 2m. Then $\omega_n^{\frac{n}{2}} = \omega_{2m}^m = \omega_2 = -1$. \Box

Cancellation lemma rewritten.

If *d* is a common divisor of *n* and *k*, then $\omega_n^k = \omega_{\frac{n}{d}}^{\frac{1}{d}}$.