
I. Core / D. Dynamic programming and greedy algorithms

▶ Dynamic programming review and overview (last week Wednesday)

▶ Dynamic programming practice (last week Friday, this past Monday, and today)

▶ Greedy algorithms (today, Friday, and next week Monday)

Today:

▶ Work through company party problem

▶ Begin Greedy algorithms



15-6 Professor Stewart is consulting for the president of a corporation that is planning
a company party. The company has a hierarchical structure; that is, the supervisor
relation forms a tree rooted at the president. The personnel office has ranked each
employee with a conviviality rating, which is a real number. In order to make the party
fun for all attendees, the president does not want both an employee and his or her
immediate supervisor to attend.

Professor Stewart is given the tree that describes the structure of the corporation using
the left-child right-sibling representation described in Section 10.4. Each node of the
tree holds, in addition to the pointers, the name of an employee and that employee’s
conviviality ranking. Describe an algorithm to make up a guest list that maximizes the
sum of the conviviality ratings of the guests. Analyze the running time of your
algorithm.



Dynamic programming vs greedy algorithms

Both are for optimization problems that have optimal substructure.

How are they different:

▶ Greedy algorithms make decisions that are locally optimal

▶ Greedy algorithms tend to be simpler, more straightforward to write

▶ The hard part of greedy algorithms is determining whether an optimal greedy
solution exists



The activity selection problem (§16.1)
▶ Problem: S , the given, complete set of activities, {a1, a2, . . .}.
▶ Subproblem: Sij , the set of activities that fall between ai and aj .

▶ Solution to subproblem: Aij , a “maximal” (in terms of cardinality) subset of Sij

Claim (Theorem 16.1 in the book):

Let am be an activity with earliest finish time in Sk . There exists a maximal
solution to Sk that includes am.

Notation switch in the book: Sk = Skn, Ak = Akn.



Theorem 16.1. Let am be an activity with earliest finish time in Sk . There exists a
maximal solution to Sk that includes am.

Let Ak be a maximal solution to subproblem Sk .

Suppose am /∈ Ak

Let aj be the element in Ak with earliest finish time.

Consider the set (Ak − {aj}) ∪ {am}.



Since

fm ≤ fj
≤ sx

. . . for all ax ∈ Ak , am does not conflict with anything in (Ak − {aj}) ∪ {am}.

|(Ak − {aj}| = |Ak | − 1 + 1

= |Ak |

So (Ak − {aj}) ∪ {am} is also. maximal. 2



Elements of the greedy strategy

find 1. The optimal substructure

develop 2. A recursive solution

prove 3/4. The greedy choice a. One subproblem remains
b. It’s safe to pick a local optimum

develop 5. A recursive algorithm

convert to 6. An iterative algorithm



Ex 16.2-1. Suppose we have items 1 through n, with vi being the value of the whole
thing and wi being its weight. W is the capacity of the knapsack. Until the knapsack
is full, (a) choose the item with highest value density ( vi

wi
) and take as much as will fit;

(b) repeat with subknapsack W − wi , assuming wi < W .
Claim: For a given instance of the problem, there is a solution using this greedy
approach.
Demonstration. Suppose A = (a1, a2, . . . an) is an optimal solution, indicated by the
weight taken from each item. It must be that a1 + a2 + . . . an ≤ W , but assume that
the total weight is in fact equal to W , since you can always increase the knapsack’s
value by adding something more. The value of the solution is

n∑
k=1

ai
vi
wi

Suppose further that item m has the highest value density and that am < wm. (We’re
also assuming wm < W ; the argument would be basically the same otherwise, just a
little more complicated.)
Start removing items from the solution until you’ve removed wm − am weight, and
then add the rest of item m. Since item m has the highest density, you now have a
more valuable knapsack.



Ex 16.2-3. Always pick the smallest, most valuable one. This works because any
solution that did not have the smallest, most valuable one can be made more valuable
(without increaseing weight) by replacing one of the others with the smallest, most
valuable one.



For next time:

Do Ex 16.2-4.

Read Sec 16.3. Note that the Huffman encoding was covered in CSCI 243
(unless you took it Spring ’23, when we skipped it). I’ve also written a section
about it for Algorithmic Commonplaces, though we don’t cover it in CSCI
345. You can refer to either of my textbooks as an additional source to help
understand what’s happening in CLRS.

Our focus will not be on the premise (which I hope you remember...) but rather
on the greedy choice property and other aspects of correctness and efficiency.

(Exercises 16.3-(2,4) will be assigned next time)


