I. Core / B. Divide and Conquer
» General introduction (last week Wednesday)
» Solving recurrences (last week Friday)
» The master method (today)
» Quick sort (Wednesday)

Today:
» Brief perusal of Section 4.4, recursion-tree method
» The intuition of the master method
» Using the master method

Formal definitions:

O(g(n)) = {f(n)|3 c1,c2,n0 € RT such that V n > ng,0 < c1g(n) < f(n) < cog(n)}
O(g(n)) = {f(n)| 3 c,no € R" such that V n > ny,0 < f(n) < c g(n)}

Q(g(n)) = {f(n)| 3 c,no € R such that V n > ny,0 < c g(n) < f(n) }

o(g(n)) = {f(n)|VceR" I np€R" such that V. n> ny,0<f(n)<cg(n)}

w(g(n)) = {f(n) |V ceR",3 ngeR" such that V n> ng,0 < c g(n) < f(n) }

ifn<l1

n—1+2Cns(5) otherwise

:{0

Cms(n)

Sy

4

cley

SIGACT News 36 Fall 1980

A General Method for Solving Divide-and-Conquer Recurrences

Jon Louis l.’.entluy2
Dorothea Haken
James B. Saxe
Department of Computer Science
Carnegio-Mellon University
Pittsburgh, Pennsyivania 15213

Abstract

The approximate complexity of divide-and-conquer algorithms is often described
by recurrence relations of the form

T(n) = kT(n/c) + 1(n) .

The only well-defined method currently used for solving such recurrences consists
of solution tables for fixed functions f and varying k and c. In this note we deseribe
a unifying method for solving these recurrences that is both general in applicability
and easy to apply. This method is appraopriate both as a classroom technique and as
1 tool for practicing algorithm designers.

7. Conclusions

To conclude this paper we will briefly review its contents. The primary
contribution Is the method that we presented to solve the various recurrences--
rewriting the recurrence by decomposing the additive term into some function times
a solution of the homogeneous system. We described this method both in the very
general terms of a recursion tree, and in the specific framework of
divide-and-conquer recurrences. This method can be applied by memorizing a simple
template (or the recursion tree formulation) and a table of three entries. While the
novice can use this framework to solve (approximately) divide-and-conquer
recurrences, lhe more experienced algorithm designer can use It In a more
advanced fashion: to prune his search for an efficient algorithm. For example, If he
were trying to find an O(n Ig3 n) algorithm by marrying together the solution to two
problems of size n/2 each, his marriage step must require O(n Ig2 n) time.

Much work remains to be done in developing general methods for rapidly solving
equations that describe the approximate complexity of algorithms; we mentioned
some areas for further work In Section 6. Such methods will never be sufficlent for
the detailed "Knuthian" analysis of algorithms, bul they can free algorithm deslgners
from mundane analyses to let them work on more interesting problems,

Acknowledgements

The authors would like to thank Professor D. £, Knuth for (properly) chiding us
about the "cook bonk" flavor of an earlier draft, and Professor V. Pratt for
suggesting the recursion tree formulation of Section 6.

The Master theorem (CLRS pg 94). Let T : N — N be defined by the recurrence

n

T(n)=aT () +f(n)
where a>1and b > 1.
> If £(n) = O(n'°852=¢) for some ¢ > 0, then T(n) = O(n'°&»2?)
> If £(n) = ©(n'°&>?) for some ¢ > 0, then f(n) = ©(n'°8+? g n)

> If £(n) = Q(n'°8>2%¢) for some € > 0 and a- f (%) = O(f(n)), then
T(n) = ©(f(n))

Understanding the Master theorem:

The work done at the leaves is inherently ©(n'°8)

binary search merge sort
a=1 b=2 a=2 b=2
1 leaf n leaves
plogal — 0 — 1 nlog22 — pl

Understanding the Master theorem:
Imagine throwing away % of the problem each time.

n

winy
S

logs 1

Understanding the Master theorem:

Imagine throwing away two quarters of the problem each time, keeping two
(independent) quarters.

. S

]]

/N
[] []

n

&=

1
En

[]
[]

a=2, b=4, number of leaves: n'°82 = p3.

NI =

Understanding the Master theorem:

Imagine three overlapping subproblems, each with size %

WIN
S

ZEEESAN

%n *
||

logz 3
83° ~ n27

~

ol
=)

a=3 b= % number of leaves: n

Understanding the Master theorem:

Let a be the number of subproblems and b be the factor by which the subproblems are
decreasing in size (size of subproblems are 7). Then

» The number of leaves is ©(n'°8s).

» Assuming a constant amount of work for each leaf, the work done at the leaves is
O(n'oes2).
» Thus the total work done by the algorithm is Q(n'°862).

Understanding the Master theorem:

In the recursion tree, what dominates—the work at the root or at the leaves?

» If one clearly (polynomially) dominates, then the whole work is © of whichever it
is.

> If they're asymptotically equivalent, then multiply the work at each level by the
height of the tree, which is ©(lg n).

» Otherwise, you're out of luck.

Understanding the Master theorem—a less-formal, big-oh-only version:
If T(n) <aT(4)+ O(n?), then
O(n1gn) if a=b? (same work at each level)
T(n) =< O(n9) if a< b? (root dominates)

O(n'8v?) if a> b? (leaves dominate)

The Master theorem (CLRS pg 94). Let T : N — N be defined by the recurrence
n

T(n) = aT (b) + f(n)

where a>1and b > 1.
> If £(n) = O(n'°853=¢) for some € > 0, then T(n) = ©(n'°8»?)
> If £(n) = ©(n'°&>?) for some ¢ > 0, then f(n) = ©(n'°8+2 g n)
> If £(n) = Q(n'°8>2t¢) for some € > 0 and a- f (£) = O(f(n)), then

T(n) = ©(f(n))
The “regularity” condition, that is there exists ¢ such that

a-f(%) < c-f(n)

The amount of work at the next level needs to be “smaller” (asymptotically
no bigger than) the work at the current level.

Ex. 4.5-1.
In each of these, a =2, b= 4. 19852 — plogs2 — 3
a. T(n)=2T(2) +1

f(n) =1= O(n|0g4 2—6) — O(n%—e)

1
where € = 1, for example. hence ©(n2).

Ex. 4.5-1.
a=2 b=24. n'°ssa = plog.2 — n%
c. T(n)=2T(3)+n

f(n) = n=Q(n2")

where € = 1, for example. So ©(n).

where € = 1, for example. So ©(n?).

4-1.

a. T(n)=2T(3)+n*

Using the master method, a = 2, b =2, and f(n) = n* = Q(n'*¢) where ¢ = 2. So,
O(n*).

Using the substitution method, guess cn*. Then
T(n) = 2T(5)+n*
= 2¢(5)*+n*
= &n* 40t

= (50t

Weneed%ig:c,soc:

~|co

4-1.
10

b. Using the master method, a=1, b = = Note that logw 1 = 0.
7

f(n) = n = Q(n") where e = 3. So, ©(n).
Using the substitution method, guess cn. Then

T(n) = T(%’)—i—n
= co(&n)+n
= 10,
e
7c+10 = 10c

4.5-4. Can we use the Master method on T(n) =4T(5) + n?lgn?
No. a=4, b =2, log, 4 = 2. Note that n?lg n = Q(n?), but there does not exist ¢
such that n’lg n = Q(n~¢)

For next time

Read sections 7.(1-3)
Do Ex 7.1-(2,3,4) and 7.2-(3 & 4)

