
The Subgraph Isomorphism problem.
Given graphs G1 = (V1,E1) and G2 = (V2,E2), does there exists a subset V3 ∈ V2 and
one-to-one correspondance f : V1 → V3 such that if (v1a, v1b) ∈ E1 then
(f (v1a), f (v1b)) ∈ E2?

v f (v)

a t
b w
c u
d s
e y

a

b c d e

z y

w v

u

t

s

x r

Proof that Subgraph Isomorphism is NP-Complete

Proof. [Subgraph Isomorphism is NP.] Suppose (G1 = (V1,E1),G2 =
(V2,E2)) is an instance of Subgraph Isomorphism and f is a function
V1 → V2 (expressed as a list of pairs where (v1,a, v2,b) indicates v1,a ∈ V1,
v2,b ∈ V2, and f (v1,a) = v2,b) proposed as an isomorphism. An algorithm
to check that f is a one-to-one function and that for all (v1,a, v1,b) ∈ E1,
(f (v1,a), f (v1,b)) ∈ E2, is polynomial with any reasonable representation of G .
Moreover, since |f | = O(V1), it is succinct.
[Subgraph Isomorphism is NP-hard.] Suppose (H = (W ,F)) is an in-
stance of Hamilton Cycle. Then construct a graph G = (V ,E) that such
that |V | = |W | and E = {(w1,w2), (w2,w3), . . . (w|V |,w1)} An algorithm to
construct this graph takes O(V) time.
Note that E has only those edges that make a Hamiltonian cycle. Thus G is
isomorphic to a subgraph of H iff H has a Hamiltonian cycle.
Therefore Subgraph Isomorphism is NP-complete. □

Suppose L /∈ P. What does this mean?

Three ways to “get around” NP-completeness:

▶ small inputs

▶ special cases

▶ near-optimal solutions

Let C ∗ be the value (or cost) of an optimal solution. Suppose we have a “near
optimal” algorithm that produces a solution with value C . How good (or bad) is C?
To quantify this, we would like to show that for some k ,

C ∗ ≤ kC (for maximization)
C ≤ kC ∗ (for minimization)

1. VertexCover. Here is a very simple algorithm. Given G = (V ,E), produce a
cover C :

C = ∅
E ′ = G .E
while E ′ ≠= ∅

pick (u, v) ∈ E ′

C = C ∪ {(u, v)}
remove from E ′ all edges incident on u or v

Claim: |C | ≤ 2 |C ∗|.
Proof sketch. Let A be the set of edges chosen from E ′ throughout the loop.
C ∗ must include at least one endpoint of every edge in A by definition of vertex
cover. Since no two edges in A share a vertex,

|C ∗| ≥ |A|

Moreover,

|C | = 2 |A| ≤ 2 |C ∗| □

2. TravellingSalesman. First of all, restrict the problem to Euclidean graphs.
Then we have a simple algorithm to compute a tour:

Pick one vertex as a root
Compute a MST (use, say, Prim’s algorithm)
Do a preorder walk of the tree
Consider the order of vertices in that walk to be the tour

Let H∗ by the real minimum Hamiltonian cycle and H be the computed one.
Claim: c(H) ≤ 2 c(H∗). (c(H) is the cost of H.)

Proof sketch. Any tour, including an optimal one, can be turned into a
spanning tree by removing one edge. Let T be the MST computed by the
algorithm.

c(T) ≤ c(H∗ − e) ≤ c(H∗)

Now a full walk of T , call it W , would hit every edge twice, so . . .

1

2
c(W) ≤ . . .

By the triangle inequality, c(H) ≤ c(W), so c(H) ≤ 2 c(H∗). □

While the P vs NP quandary is a central problem in computer science, we
must remember that a resolution of the problem may have limited practical
impact. It is conceivable that P = NP, but the polynomial-time algorithms
yielded by a proof of the equality are completely impractical, due to a very
large degree of the polynomial or a very large multiplicative constant. . . .

Even more significant, I believe, is the fact that computational complexity
theory sheds limited light on behavior of algorithms in the real world. Take,
for example, the Boolean Satisfiability Problem (SAT), which is the canonical
NP-complete problem. When I was a graduate student, SAT was a “scary”
problem, not to be touched with a 10-foot pole.

Moshe Vardi, “On P, NP, and Computational Complexity.” CACM Nov 2010

Garey and Johnson’s classical textbook showed a long sad line of programmers
who have failed to solve NP-complete problems. Guess what? These program-
mers have been busy! The August 2009 issue of Communications contained
an article by Sharad Malik and Lintao Zhang in which they described SAT’s
journey from theoretical hardness to practical success. Today’s SAT solvers,
which enjoy wide industrial usage, routinely solve SAT instances with over one
million variables. How can a scary NP-complete problem be so easy? What
is going on?

Important role of theory is to shed light on practice, and there we have large
gaps. We need, I believe, a richer and broader complexity theory, a theory that
would explain both the difficulty and the easiness of problems like SAT. More
theory, please!

Moshe Vardi, “On P, NP, and Computational Complexity.” CACM Nov 2010

nest food

nest food

To solve TSP with artificial ants: Put m artificial ants on random cities. Let the ants
know the distance between cities and remember the cities they’ve visited. At each
step, each ant chooses a new city,

▶ One it hasn’t yet visited (this tour)

▶ preferring closer cities

▶ preferring pheromone-rich edges (explained in a moment)

▶ but with a bit of randomness

The SteinerTree problem is, given a weighted graph G = (V ,E) and a subset of
vertices S ⊆ V , find a minimum-weight tree that’s a subset of G a that contains S .

Let EXP be the class of languages that can be decided in exponential time by a
deterministic TM, and let NEXP be the class of languages that can be decided in
exponential time by a nondeterministic TM (or verified in exponential time by a
deterministic TM).
We know

If P = NP, then EXP = NEXP.

Contrapositively,

If EXP ≠ NEXP, then P ≠ NP.

We don’t know the converse. It is possible that

P ≠ NP, but EXP = NEXP

EXP is TIME(2n
k
). Generally, let 2− EXP = TIME(22

nk

), 3− EXP = TIME(22
2n

k

),
etc. (P = 0− EXP).

Result:

If k − EXP = N (k − EXP), then k + 1− EXP = N (k + 1− EXP)

Define the class of elementary problems to be {L | ∃k ∈ W | L ∈ k − EXP}.

