Exit strategy:

- Exact Cover: reduction from SAT (pg 318)
- Ham Cycle: reduction from Exact Cover (p 320)
- HamPath: reduction from Ham Cycle (Ex 7.3.3)
- Undirected Ham Cycle: reduction from Ham Cycle (pg 323)
- TSP: reduction from Uni Ham Cycle (pg 324)
- Knapsack: reduction from Exact Cover (pg 325)
- Indep Set: reduction from 3-SAT (pg 326)
- Clique: reduction from Indep Set (pg 327)
- Longest Cycle: reduction from Ham Cycle (7.3.4.a)
- Subgraph Isomorphism: reduction from Ham Cycle (7.3.4.b)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Definition 7.1.2.: A language $L \subseteq \Sigma *$ is \mathcal{NP} -complete if

- 1. $L \in \mathcal{NP}$
- 2. For every language $L' \in \mathcal{NP}$, there is a polynomial reduction from L' to L [L is \mathcal{NP} -hard.

Let \mathcal{NPC} be the class of $\mathcal{NP}\text{-complete}$ languages.

Theorem 7.1.1: $\mathcal{P} = \mathcal{NP}$ iff $\exists L \in \mathcal{NPC}$ such that $L \in \mathcal{P}$.

Proving that a problem is \mathcal{NP} -complete shows that it is at least as hard as all the other problems shown to be \mathcal{NP} -complete.

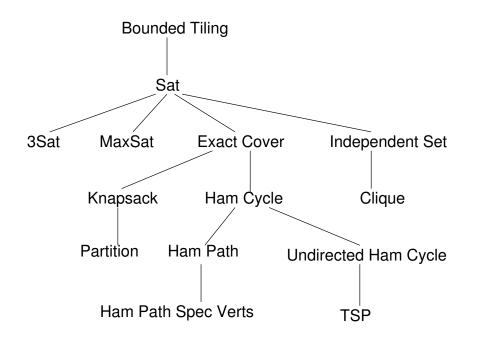
▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

A. Prove $I \in \mathcal{NP}$

- 1. Describe a certificate.
- Demonstrate it can be used to check a string/solution in polynomial time.
 Demonstrate that the certificate iteslef is succinct (polynomial in size)
 usually easy for our problems—ok to do briefly/informally
- (polynomial in size)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- B. Prove I is \mathcal{NP} -hard
 - 1. Choose a known \mathcal{NP} -complete problem L_2 .
 - 2. Describe a reduction τ from L_2 to L_2
 - 3. Demonstrate τ can be computed in polynomial time. (Also usually easy.)
 - 4. Demonstrate that $x \in L_2$ iff $\tau(x) \in L$



◆□▶ ◆□▶ ◆三▶ ◆三▶ ▲□▶ ▲□▶

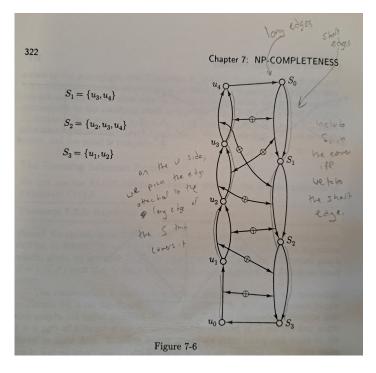
Reducing Sat to Exact Cover (Given \mathcal{U} , set of set $\mathcal{F} \subseteq \mathscr{P}(\mathcal{U})$, find partition): Suppose $\{c_1, c_2, \ldots c_\ell\}$ is an instance of Sat. Define the following instance of Exact Cover:

$$\begin{array}{ll} \{x_i\} & \text{ for each variable } i \\ \mathcal{U} = & \cup & \{c_j\} & \text{ for each clause } j \\ & \cup & \{p_{jk}\} & \text{ for each position } k \text{ in clause } j \end{array}$$

$$\mathcal{F} = \begin{cases} \forall j, k \quad \{p_{jk}\} \\ \forall i \qquad T_{i\top} = \{x_i\} \cup \{p_{jk} \mid \lambda_{jk} = \sim x_i\} \\ \forall i \qquad T_{i\perp} = \{x_i\} \cup \{p_{jk} \mid \lambda_{jk} = x_i\} \\ \forall j, k \quad \{c_j p_{jk}\} \end{cases}$$

At least one of $T_{i\perp}$ or $T_{i\top}$ for each *i* must be in the cover, which stands for the truth assignment.

- At least one of {c_jp_{jk}} must be in the cover, which stands for which literal satisfies clause j.
- The extra {p_{jk}} sets can be chosen as necessary to account for literals not used in satisfying the formula.



Proof that HAMILTONPATH is \mathcal{NP} -Complete

Proof. [HAMILTONPATH is \mathcal{NP} .] Suppose G = (V, E) is a graph, an instance of the HAMILTONPATH. Let $p = \langle u_1, u_2, \ldots, u_n \rangle$ be a sequence of vertices from V, a proposed Hamilton path in G. With any reasonable representation of G, one can check that each vertex in V appears uniquely in p, and that for any pair of vertices u_i, u_{i+1} as they appear in p, the edge (u_i, u_{i+1}) is in E. Moreover, the path p is smaller than the representation of G, so it is succinct.

[HAMILTONPATH is \mathcal{NP} -hard.] Next, suppose G = (E, V) is an instance of HAMILTONCYCLE. Let $v_1 \in V$ be an arbitrary vertex. Let G' = (V', E') be a new graph such that v_1 is removed and four new vertices are added, that is, $V' = V - \{v_1\} \cup \{v_a, v_b, v_c, v_d\}$; and every edge that is incident on v_1 is replaced with two analogous edges incident on v_b and v_c , and and edges (v_a, v_b) and (v_c, v_d) are added, that is

$$E' = (E - \{(v_1, v_x) \mid (v_1, v_x) \in E\}) \\ \cup \{(v_b, v_x), (v_c, v_x) \mid (v_1, v_x) \in E\} \\ \cup \{(v_a, v_b), (v_c, v_d)\}$$

This reduction reduction is accomplished by one pass over the edges, which is polynomially computable.

Now, suppose G has a Hamilton cycle, call it $(v_1, v_2, \ldots v_{|V|-1}, v_1)$. (As a cycle, it has an arbitrary starting/ending point, so we are free to choose v_1 as the starting point when naming the cycle.) Then G' has a Hamiltonian path $(v_a, v_b, v_2, \ldots, v_{|V|-1}, v_c, v_d)$.

Conversely, suppose G' has a Hamiltonian path. Based on how we constructed G' (for example, the only edge going out of v_a is (v_a, v_b) , and the only edge going into v_d is (v_c, v_d)), that path must be in the form $(v_a, v_b, v_2, \ldots, v_{|V|-1}, v_c, v_d)$. Then G has a Hamiltonian cycle $(v_1, v_2, \ldots, v_{|V|-1}, v_1)$.

Therefore HAMILTON PATH is \mathcal{NP} -complete. \Box

Reduction from UHC to TSP (LP pg 324).

Differences between UHC and TSP:

- ▶ The graph in TSP is *weighted* (interpreted as distances)
- ► The graph in TSP is *complete*
- ► A TSP problem has a *budget*

Suppose we have an instance of UHC, an undirected graph G = (V, E). Construct a graph with the same vertices but complete in its edges and with distances

$$d_{i,j} = \begin{cases} 0 & \text{if } i = j \\ 1 & \text{if } (v_i, v_j) \in E \\ 2 & \text{otherwise} \end{cases}$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Set the budget to |V|.

Reduction from EXACT COVER to KNAPSACK (LP pg 325).

Given an instance of EXACT COVER $(\mathcal{U}, \mathcal{F} \subseteq \mathscr{P}(\mathcal{U}))$, construct an instance of KNAPSACK (S, K):

S = {bit_vec(S_i) | S_i ∈ F} where bit_vec computes the bit-vector representation of a set.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

•
$$K = 2^{|\mathcal{U}|} - 1 = \sum_{i=0}^{|\mathcal{U}|-1} 2^{i}$$

Interpret each set in $\mathcal{P}(S)$ as a bit vector.

Problem: Consider $S = \{1, 2, 3, 4\}$ and proposed cover $\{\{1, 3\}, \{1, 4\}, \{1\}\}$.

INDEPENDENT SET problem: Given a graph, is there a set of vertices of size k with none adjacent to each other?

Reduction from 3SAT to INDEPENDENT SET (LP pg 326-327.)

Suppose we have an instance of 3SAT, $F = C_1 \wedge C_2 \wedge \cdots \wedge C_m$. WOLOG, suppose each clause has exactly three literals. Construct an instance of INDEPENDENT SET, (G, K) where K = m and G = (V, E) such that

There is a vertex in V for each literal occurrence (or clause position) $c_{i,j}$.

▶
$$(c_{i,j}, c_{x,y}) \in E$$
 if either

- i = x (they are positions in the same clause; this makes a triangle of vertices), or
- the literals $c_{i,j}$ and $c_{x,y}$ are negations of each other.

Suppose an independent set of size K exists in G. It must include exactly one vertex in each triangle. Make a truth assignment that makes each literal in the set true. Suppose a satisfying truth assignment exists. Then for each triangle, pick one vertex corresponding to a true literal.

Proof that LONGEST CYCLE is \mathcal{NP} -Complete

Proof. [LONGEST CYCLE is \mathcal{NP} .] Suppose (G = (V, E), K) is an instance of LONGEST CYCLE and p is a path that is a proposed cycle of length K. An algorithm to check that p is consistent with E, has no repeated vertices, and has length at least K, is polynomial with any reasonable representation of G. Moreover, since p is no larger than the representation of G, it is succinct. [LONGEST CYCLE is \mathcal{NP} -hard.] Suppose (G = (V, E)) is an instance of HAMILTON CYCLE. Then make an instance of LONGEST CYCLE by letting K = |V|, which obviously can be done in polynomial time. Since K = |V|, any cycle of length (at least) K must be a Hamilton cycle, and any Hamilton cycle must have length K. Therefore LONGEST CYCLE is \mathcal{NP} -complete. \Box

Proof that SUBGRAPH ISOMORPHISM is \mathcal{NP} -Complete

Proof. [SUBGRAPH ISOMORPHISM is \mathcal{NP} .] Suppose $(G_1 = (V_1, E_1), G_2 = (V_2, E_2))$ is an instance of SUBGRAPH ISOMORPHISM and f is a function $V_1 \rightarrow V_2$ (expressed as a list of pairs where $(v_{1,a}, v_{2,b})$ indicates $v_{1,a} \in V_1$, $v_{2,b} \in V_2$, and $f(v_{1,a}) = v_{2,b}$) proposed as an isomorphism. An algorithm to check that f is a one-to-one function and that for all $(v_{1,a}, v_{1,b}) \in E_1$, $(f(v_{1,a}), f(v_{1,b})) \in E_2$, is polynomial with any reasonable representation of G. Moreover, since $|f| = O(V_1)$, it is succinct.

[SUBGRAPH ISOMORPHISM is \mathcal{NP} -hard.] Suppose (H = (W, F)) is an instance of HAMILTON CYCLE. Then construct a graph G = (V, E) that such that |V| = |W| and $E = \{(w_1, w_2), (w_2, w_3), \dots, (w_{|V|}, w_1)\}$ An algorithm to construct this graph takes O(V) time.

Note that E has only those edges that make a Hamiltonian cycle. Thus G is isomorphic to a subgraph of H iff H has a Hamiltonian cycle. Therefore SUBGRAPH ISOMORPHISM is \mathcal{NP} -complete. \Box