
Exit strategy:

▶ Exact Cover: reduction from SAT (pg 318)

▶ Ham Cycle: reduction from Exact Cover (p 320)

▶ HamPath: reduction from Ham Cycle (Ex 7.3.3)

▶ Undirected Ham Cycle: reduction from Ham Cycle (pg 323)

▶ TSP: reduction from Uni Ham Cycle (pg 324)

▶ Knapsack: reduction from Exact Cover (pg 325)

▶ Indep Set: reduction from 3-SAT (pg 326)

▶ Clique: reduction from Indep Set (pg 327)

▶ Longest Cycle: reduction from Ham Cycle (7.3.4.a)

▶ Subgraph Isomorphism: reduction from Ham Cycle (7.3.4.b)

Definition 7.1.2.: A language L ⊆ Σ* is NP-complete if

1. L ∈ NP
2. For every language L′ ∈ NP, there is a polynomial reduction from L′ to L [L is

NP-hard.

Let NPC be the class of NP-complete languages.

Theorem 7.1.1: P = NP iff ∃ L ∈ NPC such that L ∈ P.

Proving that a problem is NP-complete shows that it is at least as hard as all the
other problems shown to be NP-complete.

A. Prove L ∈ NP

1. Describe a certificate.
2. Demonstrate it can be used to check a string/solution

in polynomial time.
3. Demonstrate that the certificate iteslef is succinct

(polynomial in size)

usually easy for our
problems—ok to do
briefly/informally

B. Prove L is NP-hard

1. Choose a known NP-complete problem L2.
2. Describe a reduction τ from L2 to L.
3. Demonstrate τ can be computed in polynomial time. (Also usually easy.)
4. Demonstrate that x ∈ L2 iff τ(x) ∈ L

Ham Path

Ham Path Spec Verts

Bounded Tiling

Sat

3Sat MaxSat Exact Cover Independent Set

CliqueHam CycleKnapsack

Undirected Ham Cycle

TSP

Partition

Reducing Sat to Exact Cover (Given U , set of set F ⊆ P(U), find partition):
Suppose {c1, c2, . . . cℓ} is an instance of Sat.
Define the following instance of Exact Cover:

U =
{xi} for each variable i

∪ {cj} for each clause j
∪ {pjk} for each position k in clause j

F =

{ ∀j , k {pjk}
∀i Ti⊤ = {xi} ∪ {pjk | λjk =∼ xi}
∀i Ti⊥ = {xi} ∪ {pjk | λjk = xi}
∀j , k {cjpjk} }

▶ At least one of Ti⊥ or Ti⊤ for each i must be in the cover, which stands for the
truth assignment.

▶ At least one of {cjpjk} must be in the cover, which stands for which literal
satisfies clause j .

▶ The extra {pjk} sets can be chosen as necessary to account for literals not used in
satisfying the formula.

Proof that HamiltonPath is NP-Complete

Proof. [HamiltonPath is NP.] Suppose G = (V ,E) is a graph, an
instance of the HamiltonPath. Let p = ⟨u1, u2, . . . un⟩ be a a sequence
of vertices from V , a proposed Hamilton path in G . With any reasonable
representation of G , one can check that each vertex in V appears uniquely
in p, and that for any pair of vertices ui , ui+1 as they appear in p, the edge
(ui , ui+1) is in E . Moreover, the path p is smaller than the representation of
G , so it is succinct.
[HamiltonPath is NP-hard.] Next, suppose G = (E ,V) is an instance of
HamiltonCycle. Let v1 ∈ V be an arbitrary vertex. Let G ′ = (V ′,E ′) be
a new graph such that v1 is removed and four new vertices are added, that
is, V ′ = V − {v1} ∪ {va, vb, vc , vd}; and every edge that is incident on v1
is replaced with two analogous edges incident on vb and vc , and and edges
(va, vb) and (vc , vd) are added, that is

E ′ = (E − {(v1, vx) | (v1, vx) ∈ E})
∪{(vb, vx), (vc , vx) | (v1, vx) ∈ E}
∪{(va, vb), (vc , vd)}

This reduction reduction is accomplished by one pass over the edges, which is
polynomially computable.
Now, suppose G has a Hamilton cycle, call it (v1, v2, . . . v|V |−1, v1). (As a
cycle, it has an arbitrary starting/ending point, so we are free to choose v1 as
the starting point when naming the cycle.) Then G ′ has a Hamiltonian path
(va, vb, v2, . . . , v|V |−1, vc , vd).
Conversely, suppose G ′ has a Hamiltonian path. Based on how we con-
structed G ′ (for example, the only edge going out of va is (va, vb),
and the only edge going into vd is (vc , vd)), that path must be in
the form (va, vb, v2, . . . , v|V |−1, vc , vd). Then G has a Hamiltonian cycle
(v1, v2, . . . v|V |−1, v1).
Therefore Hamilton Path is NP-complete. □

Reduction from UHC to TSP (LP pg 324).

Differences between UHC and TSP:

▶ The graph in TSP is weighted (interpreted as distances)

▶ The graph in TSP is complete

▶ A TSP problem has a budget

Suppose we have an instance of UHC, an undirected graph G = (V ,E). Construct a
graph with the same vertices but complete in its edges and with distances

di ,j =

0 if i = j
1 if (vi , vj) ∈ E
2 otherwise

Set the budget to |V |.

Reduction from Exact Cover to Knapsack (LP pg 325).

Given an instance of Exact Cover (U ,F ⊆ P(U)), construct an instance of
Knapsack (S ,K):

▶ S = {bit vec(Si) | Si ∈ F} where bit vec computes the bit-vector representation
of a set.

▶ K = 2|U| − 1 =
∑|U|−1

i=0 2i

Interpret each set in P(S) as a bit vector.

Problem: Consider S = {1, 2, 3, 4} and proposed cover {{1, 3}, {1, 4}, {1}}.

Independent Set problem: Given a graph, is there a set of vertices of size k with
none adjacent to each other?

Reduction from 3Sat to Independent Set (LP pg 326–327.)

Suppose we have an instance of 3Sat, F = C1 ∧ C2 ∧ · · · ∧ Cm. WOLOG, suppose
each clause has exactly three literals. Construct an instance of Independent Set,
(G ,K) where K = m and G = (V ,E) such that

▶ There is a vertex in V for each literal occurrence (or clause position) ci ,j .
▶ (ci ,j , cx ,y) ∈ E if either

▶ i = x (they are positions in the same clause; this makes a triangle of vertices), or
▶ the literals ci,j and cx,y are negations of each other.

Suppose an independent set of size K exists in G . It must include exactly one vertex in
each triangle. Make a truth assignment that makes each literal in the set true.
Suppose a satisfying truth assignment exists. Then for each triangle, pick one vertex
corresponding to a true literal.

Proof that Longest Cycle is NP-Complete

Proof. [Longest Cycle is NP.] Suppose (G = (V ,E),K) is an instance
of Longest Cycle and p is a path that is a proposed cycle of length K . An
algorithm to check that p is consistent with E , has no repeated vertices, and
has length at least K , is polynomial with any reasonable representation of G .
Moreover, since p is no larger than the representation of G , it is succinct.
[Longest Cycle is NP-hard.] Suppose (G = (V ,E)) is an instance of
Hamilton Cycle. Then make an instance of Longest Cycle by letting
K = |V |, which obviously can be done in polynomial time.
Since K = |V |, any cycle of length (at least) K must be a Hamilton cycle,
and any Hamilton cycle must have length K .
Therefore Longest Cycle is NP-complete. □

Proof that Subgraph Isomorphism is NP-Complete

Proof. [Subgraph Isomorphism is NP.] Suppose (G1 = (V1,E1),G2 =
(V2,E2)) is an instance of Subgraph Isomorphism and f is a function
V1 → V2 (expressed as a list of pairs where (v1,a, v2,b) indicates v1,a ∈ V1,
v2,b ∈ V2, and f (v1,a) = v2,b) proposed as an isomorphism. An algorithm
to check that f is a one-to-one function and that for all (v1,a, v1,b) ∈ E1,
(f (v1,a), f (v1,b)) ∈ E2, is polynomial with any reasonable representation of G .
Moreover, since |f | = O(V1), it is succinct.
[Subgraph Isomorphism is NP-hard.] Suppose (H = (W ,F)) is an in-
stance of Hamilton Cycle. Then construct a graph G = (V ,E) that such
that |V | = |W | and E = {(w1,w2), (w2,w3), . . . (w|V |,w1)} An algorithm to
construct this graph takes O(V) time.
Note that E has only those edges that make a Hamiltonian cycle. Thus G is
isomorphic to a subgraph of H iff H has a Hamiltonian cycle.
Therefore Subgraph Isomorphism is NP-complete. □

