
§6.4. The class NP defined

Our aspiration: We want to identify problems that are not in class P.

We suspect Ham-Cycle, TSP, Indep-Set, Partition, SAT, and 3-SAT are not in class P.
They all happen to be in class NP.

A language L is in class NP if there exists a nondeterministic Turing machine M such
that

▶ All computations are bounded by a polynomial in the size of the input (and hence
halt)

▶ There are no false positives:
If w /∈ L then all computations of M on w halt n

▶ There may be some false negatives, but there must be at least one true positive
If w ∈ L, then ∃ a computation of M on w that halts y

LP pg 293

Notice how cleverly the nodeterministic “algorithms” of [Examples 6.4.(1&2)]
exploit the fundamental asymmetry in the definition of nondeterministic time-
bounded computation. They try out all possible solutions to the problem in
hand in independent computations, and accept as soon as they discover one
that works—oblivious of the others that do not. LP pg 295

▶ P ⊆ NP, just as R ⊆ RE .

▶ P ⊆ EXP, but P ≠ EXP.
(since E ∈ EXP but E /∈ P, Theorem 6.1.2)

▶ NP ⊆ EXP. (Theorem 6.4.1)

▶ These imply that P ⊆ NP ⊆ EXP,
but also that P = NP and NP = EXP cannot both be true.

▶ We don’t know whether P ≠ NP or NP ̸= EXP (possibly both are true).

Alternative definition of NP:

L ∈ NP if there exists a Turing machine M such that for all w ∈ L there
exists a string y such that |y | is polynomial in |w | and M computes whether
w ∈ L in polynomial time when given w ; y as input.

y is a succinct certificate.

CLRS’s definition of class NP:

The complexity class NP is the class of languages that can be verified by a
polynomial-time algorithm. More precisely, a language L belongs to NP if and
only if there exist a two-input polynomial-time algorithm A and a constant c
such that

L = {x ∈ {0, 1}* | ∃ a certificate y with |y | = O(|x |c)
such that A(x , y) = 1}

We say that algorithm A verifies language L in polynomial time. CLRS pg 1064

Revisiting the nature of a reduction:

▶ A reduction from A to B uses a solution to B to build a solution to A.
“If we can solve B [within constraints], then we can solve A [within analogous
constraints].”

▶ To show a polynomial reduction from L1 to L2 requires us to
▶ Describe a function τ from L1-candidates to L2-candidates
▶ Show that τ is computed in polynomial time.
▶ Show that ∀ x ∈ L1-candidates, x ∈ L1 iff τ(x) ∈ L2.

So the reduction turns an instance of “problem” L1 to an instance of “problem”
L2.

▶ A reduction from A to B is evidence that B is at least as hard as A.

We need to show there exists a Hamiltonian cycle in G = (V ,E) iff there exists a
satisfying truth assignment to the formula.

Proof (⇒) Suppose T satisfies the formula. Then for each vi ∈ V (that is,
each i ∈ [1, n]), exactly one xij is true. For each j ∈ [1, n] (that is, for each
position in the cycle), exactly one xij is true. If xij and xkj+1 are both true,
then (vi , vk) ∈ E.

(⇐) Conversely, suppose there exists a Hamiltonian cycle for G. Then the
truth assignment T where T (xij) = ⊤ iff vi is in the jth position in the cycle
satisfies the formula. □

This is bad news for SAT.

▶ If we could solve SAT in polynomial time [or any other time category], then we
could solve HamCycle in polynomial time [or whatever category]

▶ If we prove HamCycle can’t be solved in polynomial time, then SAT also can’t.

▶ If we prove SAT can’t be done in polynomial time, then the story still isn’t over
for HamCycle.

Example 7.1.2: Reducing Knapsack to Partition

Knapsack: Given a set S of n integers and capacity k, is there [find] a subset of S that
sum exactly to k?
Partition: Given a set S of n integers, can they be partitioned exactly in half (in terms
of their sum)?

Let S = {a1, a2, . . . an}, k be an instance of Knapsack.

Let H = 1
2

∑
ai∈S ai and make set S2 = S ∪ {2H + 2k , 4H}. This is an instance of

Partition.
Suppose a partition exists for S2, call it P ∪ {4H} and (S − P) ∪ {2H + 2k} for some
P ⊆ S . Then

4H +
∑

ai∈P ai = 2H + 2k +
∑

ai∈S−P ai
4H + 2

∑
ai∈P ai = 2H + 2k +

∑
ai∈S ai = 2H + 2k + 2H = 4H + 2k∑

ai∈P ai = k

And so P is our solution to Knapsack.

Conversely, suppose there exists P ⊆ S , a solution to Knapsack, that is,
∑

ai∈P ai = k .
Work backwards algebraically . . .

Definition 7.1.2.: A language L ⊆ Σ* is NP-complete if

1. L ∈ NP
2. For every language L′ ∈ NP, there is a polynomial reduction from L′ to L [L is

NP-hard].

Let NPC be the class of NP-complete languages.

Theorem 7.1.1: P = NP iff ∃ L ∈ NPC such that L ∈ P.

Proving that a problem is NP-complete shows that it is at least as hard as all the
other problems shown to be NP-complete.

Bounded tiling: Like the original tiling problem, but we are given the entire first row,
and we need to tile only a certain portion, an s × s square.

The NP-completeness proof:
Bounded-Tiling is in class NP: The certificate is the s × s square. We can
check that the square is legal in O(s2) time. This is polynomial in the size of
the input, since the size of the input is Ω(s).

Now, suppose L ∈ NP. Then there exists M, a nondeterministic Turing
machine that decides L in p(|x |) for some polynomial p, where x ranges over
the candidate strings for L.

(Very informal:) Base s on p(|x |), and set up a tiling system analogous to
the proof that the original tiling problem is undecidable. A tiling exists iff a
computation that accepts x exists (and hence x ∈ L). □

A. Prove L ∈ NP

1. Describe a certificate.
2. Demonstrate that the certificate can be used to check

a string/solution in polynomial time.
3. Demonstrate that the certificate itself is succinct

(polynomial in size)


usually easy for our
problems—ok to do
briefly/informally

B. Prove L is NP-hard

1. Choose a known NP-complete problem L2.
2. Describe a reduction τ from L2 to L.
3. Demonstrate τ can be computed in polynomial time. (Also usually easy.)
4. Demonstrate that x ∈ L2 iff τ(x) ∈ L

Ham Path

Ham Path Spec Verts

Bounded Tiling

Sat

3Sat MaxSat Exact Cover Independent Set

CliqueHam CycleKnapsack

Undirected Ham Cycle

TSP

Partition

Reducing Sat to Exact Cover:
Suppose {c1, c2, . . . cℓ} is an instance of Sat.
Define the following instance of Exact Cover:

U =
{xi} for each variable i

∪ {cj} for each clause j
∪ {pjk} for each position k in clause j

F =

{ ∀j , k {pjk}
∀i Ti⊤ = {xi} ∪ {pjk | λjk =∼ xi}
∀i Ti⊥ = {xi} ∪ {pjk | λjk = xi}
∀j , k {cjpjk} }

▶ At least one of Ti⊥ or Ti⊤ for each i must be in the cover, which stands for the
truth assignment.

▶ At least one of {cjpjk} must be in the cover, which stands for which literal
satisfies clause j .

▶ The extra {pjk} sets can be chosen as necessary to account for literals not used in
satisfying the formula.

Proof that HamiltonPath is NP-Complete

Proof. [HamiltonPath is NP.] Suppose G = (V ,E) is a graph, an
instance of the HamiltonPath. Let p = ⟨u1, u2, . . . un⟩ be a a sequence
of vertices from V , a proposed Hamilton path in G. With any reasonable
representation of G, one can check that each vertex in V appears uniquely
in p, and that for any pair of vertices ui , ui+1 as they appear in p, the edge
(ui , ui+1) is in E . Moreover, the path p is smaller than the representation of
G, so it is succinct.
[HamiltonPath is NP-hard.] Next, suppose G = (E ,V) is an instance of
HamiltonCycle. Let v1 ∈ V be an arbitrary vertex. Let G ′ = (V ′,E ′) be
a new graph such that v1 is removed and four new vertices are added, that
is, V ′ = V − {v1} ∪ {va, vb, vc , vd}; and every edge that is incident on v1
is replaced with two analogous edges incident on vb and vc , and and edges
(va, vb) and (vc , vd) are added, that is

E ′ = (E − {(v1, vx) | (v1, vx) ∈ E})
∪{(vb, vx), (vc , vx) | (v1, vx) ∈ E}
∪{(va, vb), (vc , vd)}

This reduction reduction is accomplished by one pass over the edges, which is
polynomially computable.
Now, suppose G has a Hamilton cycle, call it (v1, v2, . . . v|V |−1, v1). (As a
cycle, it has an arbitrary starting/ending point, so we are free to choose v1 as
the starting point when naming the cycle.) Then G ′ has a Hamiltonian path
(va, vb, v2, . . . , v|V |−1, vc , vd).
Conversely, suppose G ′ has a Hamiltonian path. Based on how we con-
structed G ′ (for example, the only edge going out of va is (va, vb),
and the only edge going into vd is (vc , vd)), that path must be in
the form (va, vb, v2, . . . , v|V |−1, vc , vd). Then G has a Hamiltonian cycle
(v1, v2, . . . v|V |−1, v1).
Therefore Hamilton Path is NP-complete. □

Proof that Longest Cycle is NP-Complete

Proof. [Longest Cycle is NP.] Suppose (G = (V ,E),K) is an instance
of Longest Cycle and p is a path that is a proposed cycle of length K. An
algorithm to check that p is consistent with E, has no repeated vertices, and
has length at least K, is polynomial with any reasonable representation of G.
Moreover, since p is no larger than the representation of G, it is succinct.
[Longest Cycle is NP-hard.] Suppose (G = (V ,E)) is an instance of
Hamilton Cycle. Then make an instance of Longest Cycle by letting
K = |V |, which obviously can be done in polynomial time.
Since K = |V |, any cycle of length (at least) K must be a Hamilton cycle,
and any Hamilton cycle must have length K.
Therefore Longest Cycle is NP-complete. □

Proof that Subgraph Isomorphism is NP-Complete

Proof. [Subgraph Isomorphism is NP.] Suppose (G1 = (V1,E1),G2 =
(V2,E2)) is an instance of Subgraph Isomorphism and f is a function
V1 → V2 (expressed as a list of pairs where (v1,a, v2,b) indicates v1,a ∈ V1,
v2,b ∈ V2, and f (v1,a) = v2,b) proposed as an isomorphism. An algorithm
to check that f is a one-to-one function and that for all (v1,a, v1,b) ∈ E1,
(f (v1,a), f (v1,b)) ∈ E2, is polynomial with any reasonable representation of G.
Moreover, since |f | = O(V1), it is succinct.
[Subgraph Isomorphism is NP-hard.] Suppose (H = (W ,F)) is an in-
stance of Hamilton Cycle. Then construct a graph G = (V ,E) that such
that |V | = |W | and E = {(w1,w2), (w2,w3), . . . (w|V |,w1)} An algorithm to
construct this graph takes O(V) time.
Note that E has only those edges that make a Hamiltonian cycle. Thus G is
isomorphic to a subgraph of H iff H has a Hamiltonian cycle.
Therefore Subgraph Isomorphism is NP-complete. □

Reduction from UHC to TSP (LP pg 324).

Differences between UHC and TSP:

▶ The graph in TSP is weighted (interpreted as distances)

▶ The graph in TSP is complete

▶ A TSP problem has a budget

Suppose we have an instance of UHC, an undirected graph G = (V ,E). Construct a
graph with the same vertices but complete in its edges and with distances

di ,j =


0 if i = j
1 if (vi , vj) ∈ E
2 otherwise

Set the budget to |V |.

Reduction from Exact Cover to Knapsack (LP pg 325).

Given an instance of Exact Cover (U ,F ⊆ P(U)), construct an instance of
Knapsack (S ,K):

▶ S = {1, 2, . . . |U|}
▶ K = 2|U| − 1 =

∑|U|−1
i=0

Interpret each set in P(S) as a bit vector.

Problem: Consider S = {1, 2, 3, 4} and proposed cover {{1, 3}, {1, 4}, {1}}.

Independent Set problem: Given a graph, is there a set of vertices of size k with
none adjacent to each other?

Reduction from 3Sat to Independent Set (LP pg 326–327.)

Suppose we have an instance of 3Sat, F = C1 ∧ C2 ∧ · · · ∧ Cm. WOLOG, suppose
each clause has exactly three literals. Construct an instance of Independent Set,
(G ,K) where K = m and G = (V ,E) such that

▶ There is a vertex in V for each literal occurrence (or clause position) ci ,j .
▶ (ci ,j , cx ,y) ∈ E if either

▶ i = x (they are positions in the same clause; this makes a triangle of vertices), or
▶ the literals ci,j and cx,y are negations of each other.

Suppose an independent set of size K exists in G . It must include exactly one vertex in
each triangle. Make a truth assignment that makes each literal in the set true.
Suppose a satisfying truth assignment exists. Then for each triangle, pick one vertex
corresponding to a true literal.

