I. Core / B. Divide and Conquer

» General introduction (last week Wednesday)

» Solving recurrences (last week Friday)

» The master method (Monday)

» Quick sort (today)

» (Begin advanced analysis techniques Friday)
Today:

> Algorithm itself

» Correctness

> Efficiency

> “Killer adversary”



Why study quick sort in light of the facts that
P> you've seen it in earlier courses

» other sorts (counting sort, radix sort, merge sort, Tim sort) beat it under some
circumstances

Because
» It's a beautiful algorithm.
P It's a good context in which to apply what we've done recently.
» This chapter has some really good exercises and problems in it.

» There is a nifty side note | want to show you.



start i J stop
’ < pivot \ > pivot \ unsearched \ ‘

Invariant (partition())

(a) V k € [start, /], A[k] < pivot
(b) V k € (i,j),Alk] > pivot
(c) A[stop — 1] = pivot
(d)

d) j — start is the number of iterations



Invariant (partition())

(a) V k € [start,i], A[k] < pivot
(b) Y k € (i,j), Alk] > pivot

(c) Alstop — 1] = pivot

(d)

d) j — start is the number of iterations

Initialization. Before the loop starts, a and b are trivial, and c is true by
assignment. Moreover, j — start =0, so d.

Maintenance. Suppose the invariant holds after some £ iterations.

On the ¢ + 1st iteration, either Aygj] < pivot or Ayglj] > pivot.

Case 1. Suppose Ayqlj] < pivot. Then

inew = iold +1
Anew[inew] = Ao/dljold] < inOt
Anew[jnew - ]-] - Aold[jold] — A[inew]

= Aligg+1] > pivot



Invariant (partition())

(a) V k € [start,i], Alk] < pivot
(b) V k € (i,j),Alk] > pivot
(c)

)

(d) j — start is the number of iterations

Alstop — 1] = pivot

[Continued. . . |
On the ( + 1st iteration, either Ao4j] < pivot or Agulj] > pivot.
Case 2. Suppose Aoglj] > pivot. Then

A[/new - 1] = A[jo/d] > pivot

In either case, jpew — start = joy+ 1 —start =4+ 1. [J



Ex 7.2-3. Not-quite-right solution. Find the error.
Recursion Invariant. For each call to quicksort_r() on the range [start, stop), A is
backward sorted on the range.

Proof. By induction on the structure of the recursive calls to quicksort_r().
Initialization. This is given, that is, that the initial array is backwards sorted.

Maintenance. Suppose the current subarray—that is, the input to the call of
quicksort_r()—is backwards sorted. The pivot is the smallest element.

Hence when the loop terminates, the less-than-the-pivot section is empty,
and the greater-than-the-pivot section has no exchanges and hence is still
backwards-sorted. quicksort_r() is then called on that subarray.



For next time
Read sections Read Sec 8.(1-4), although really Sec 8.1 is the main thing we'll
be talking about, so read that carefully.

Sections 8.(2-4) should be review from CSCl 345, but all that is stuff that you
do need to know, so the review is worth it.

Do Ex 8.1-(1,3,4)

“Divide and Conquer” problem set due Wed, Sept 25.



