
I. Core / B. Divide and Conquer

▶ General introduction (last week Wednesday)

▶ Solving recurrences (last week Friday)

▶ The master method (Monday)

▶ Quick sort (today)

▶ (Begin advanced analysis techniques Friday)

Today:

▶ Algorithm itself

▶ Correctness

▶ Efficiency

▶ “Killer adversary”



Why study quick sort in light of the facts that

▶ you’ve seen it in earlier courses

▶ other sorts (counting sort, radix sort, merge sort, Tim sort) beat it under some
circumstances

?

Because

▶ It’s a beautiful algorithm.

▶ It’s a good context in which to apply what we’ve done recently.

▶ This chapter has some really good exercises and problems in it.

▶ There is a nifty side note I want to show you.



start i j stop

≤ pivot > pivot unsearched

Invariant (partition())

(a) ∀ k ∈ [start, i ],A[k] ≤ pivot

(b) ∀ k ∈ (i , j),A[k] > pivot

(c) A[stop− 1] = pivot

(d) j − start is the number of iterations



Invariant (partition())

(a) ∀ k ∈ [start, i ],A[k] ≤ pivot

(b) ∀ k ∈ (i , j),A[k] > pivot

(c) A[stop− 1] = pivot

(d) j − start is the number of iterations

Initialization. Before the loop starts, a and b are trivial, and c is true by
assignment. Moreover, j − start = 0, so d.
Maintenance. Suppose the invariant holds after some ℓ iterations.
On the ℓ+ 1st iteration, either Aold[j ] ≤ pivot or Aold[j ] > pivot.
Case 1. Suppose Aold[j ] ≤ pivot. Then

inew = iold + 1
Anew[inew] = Aold[jold] ≤ pivot

Anew[jnew − 1] = Aold[jold] = A[inew]
= A[iold + 1] > pivot



Invariant (partition())

(a) ∀ k ∈ [start, i ],A[k] ≤ pivot

(b) ∀ k ∈ (i , j),A[k] > pivot

(c) A[stop− 1] = pivot

(d) j − start is the number of iterations

[Continued. . . ]
On the ℓ+ 1st iteration, either Aold[j ] ≤ pivot or Aold[j ] > pivot.
Case 2. Suppose Aold[j ] > pivot. Then

A[jnew − 1] = A[jold] > pivot

In either case, jnew − start = jold + 1− start = ℓ+ 1. □



Ex 7.2-3. Not-quite-right solution. Find the error.
Recursion Invariant. For each call to quicksort r() on the range [start, stop), A is
backward sorted on the range.

Proof. By induction on the structure of the recursive calls to quicksort r().
Initialization. This is given, that is, that the initial array is backwards sorted.

Maintenance. Suppose the current subarray—that is, the input to the call of
quicksort r()—is backwards sorted. The pivot is the smallest element.

Hence when the loop terminates, the less-than-the-pivot section is empty,
and the greater-than-the-pivot section has no exchanges and hence is still
backwards-sorted. quicksort r() is then called on that subarray.



For next time

Read sections Read Sec 8.(1-4), although really Sec 8.1 is the main thing we’ll
be talking about, so read that carefully.

Sections 8.(2-4) should be review from CSCI 345, but all that is stuff that you
do need to know, so the review is worth it.

Do Ex 8.1-(1,3,4)

“Divide and Conquer” problem set due Wed, Sept 25.


