
I. Core / B. Divide and Conquer

▶ General introduction (aspired to on Monday but actually Wednesday)

▶ Solving recurrences (also today)

▶ The master method (next week Monday)

▶ Quick sort (next week Wednesday)

Today:

▶ Old bits from Section 3.1

▶ Problem 3-4.c

▶ Common functions (Section 3.2)

▶ Divide and conquer big pictures (Sections 4.(1 & 2))

▶ The substitution method (Section 4.3)



For next time

Read sections 4.(4 & 5).

Do Ex 4.5-1 and Problem 4-1.(a.b)



Problem 3-4.c. If f (n) = O(g(n)) and lg(g(n)) ≥ 1 and f (n) ≥ 1 for sufficiently
large n, then lg(f (n)) = O(lg(g(n)).

Scratch work: We need a d such that

lg c + lg g(n) ≤ d lg g(n)

d ≥ lg c

lg g(n)
+ lg g(n)

lg g(n)

≥ lg c + 1
(lg c + 1)lg g(n) = lg c · lg g(n) + lg g(n)

Proof. Suppose f (n) = O(g(n)). Then there exist c, n0 such that for all
n > n0, f (n) ≤ c · g(n). Then

lg f (n) ≤ lg c g(n) since lg is increasing
≤ lg c + lg g(n) by log property
≤ lg c · lg g(n) + lg g(n) Since lg g(n) ≥ 1
≤ (lg c + 1) · lg g(n)

Thus for n > n0, lg(f (n)) ≤ (lg c + 1) lg(g(n)).



Big “morals” of §4.(1 & 2)

▶ Many problems have good divide and conquer solutions. The running time of a
divide and conquer algorithm can be captured by a recurrence. So, let’s make sure
we can do recurrences.

▶ Sometimes it’s divide-and-conquer even when it doesn’t seem like it is.

▶ “Solving” a recurrence means finding an equivalent non-recursive formula.



“Normal” math induction:

“Normal” math induction:
I (0)
I (n) → I (n + 1)

∴ ∀ n ∈ N, I (n)

“Strong” math induction:
I (0)
(∀ i ≤ n, I (i)) → I (n + 1)

∴ ∀ n ∈ N, I (n)



Elements of recurrences (things to look for in making a good guess):

▶ The coefficient of the recursive application (number of subproblems)

▶ The divisor of n in the recursive application (size of subproblems)

▶ The non-recursive terms



Ex. 4.3-1. T (n) = T (n − 1) + n. Guess T (n) ≤ c · n2. Then

T (n) ≤ c(n − 1)2 + n

= cn2 − 2cn + c + n

= cn2 + (1− 2c)n + c

≤ cn2

The last step holds as long as

(1− 2c)n + c ≤ 0

(2c − 1)n ≥ c

n ≥ c
2c−1

The recurrence holds so long as c > 1
2 and n0 >

c
2c−1 .



Ex. 4.3-1. T (n) = T (n − 1) + n. Guess T (n) ≤ c · n2. Then

T (n) ≤ c(n − 1)2 + n

= cn2 − 2cn + c + n

= cn2 + (1− 2c)n + c

≤ cn2

The last step holds as long as

(1− 2c)n + c ≤ 0

(2c − 1)n ≥ c

n ≥ c
2c−1

The recurrence holds so long as c > 1
2 and n0 >

c
2c−1 .



4.3-2. T (n) = T (⌈n2⌉) + 1. First attempt. Guess T (n) ≤ c lg n

T (n) ≤ c lg⌈n2⌉+ 1

≤ c lg(n2 + 1
2) + 1

= c lg(n+1
2 ) + 1

= c(lg(n + 1)− lg 2) + 1

= c(lg(n + 1)− 1) + 1

= c lg(n + 1)− c + 1

We would need this to be less than c lg n . . .



4.3-2. T (n) = T (⌈n2⌉) + 1. First attempt. Guess T (n) ≤ c lg n

T (n) ≤ c lg⌈n2⌉+ 1

≤ c lg(n2 + 1
2) + 1

= c lg(n+1
2 ) + 1

= c(lg(n + 1)− lg 2) + 1

= c(lg(n + 1)− 1) + 1

= c lg(n + 1)− c + 1

We would need this to be less than c lg n . . .



4.3-2. T (n) = T (⌈n2⌉) + 1. Try again. This time, guess T (n) ≤ c lg(n − b).

T (n) ≤ c lg(⌈n2⌉ − b) + 1

≤ c lg(n2 + 1
2 − b) + 1

= c lg(n+1−2b
2 ) + 1

= c(lg(n + 1− 2b)− lg 2) + 1

= c lg(n + 1− 2b)− c + 1

≤ c lg(n − b)

The last part holds if n + 1− 2b ≤ n − b, so b ≥ 1; and if −c + 1 ≤ 0, so c ≥ 1.



4.3-6. T (n) = 2T (⌊n2⌋+ 17) + n. Guess cn lg n. Then

T (n) = 2T (⌊n2⌋+ 17) + n

≤ 2c(⌊n2⌋+ 17) lg(⌊n2⌋+ 17) + n

≤ 2c(n2 + 17) lg(n2 + 17) + n

= c(n + 34)(lg(n + 34)− 1) + n

= cn lg(n + 34)− cn − c34 + n

This isn’t working out.



4.3-6. T (n) = 2T (⌊n2⌋+ 17) + n. Guess cn lg n. Then

T (n) = 2T (⌊n2⌋+ 17) + n

≤ 2c(⌊n2⌋+ 17) lg(⌊n2⌋+ 17) + n

≤ 2c(n2 + 17) lg(n2 + 17) + n

= c(n + 34)(lg(n + 34)− 1) + n

= cn lg(n + 34)− cn − c34 + n

This isn’t working out.



4.3-6. T (n) = 2T (⌊n2⌋+ 17) + n. Try again, this time guess c(n − 34) lg(n − 34).

T (n) = 2T (⌊n2⌋+ 17) + n

≤ 2c(⌊n2⌋+ 17− 34) lg(⌊n2⌋+ 17− 34) + n

≤ 2c(n2 + 17− 34) lg(n2 + 17− 34) + n

= c(n − 34) lg(n−34
2 ) + n = c(n − 34)(lg(n − 34)− 1) + n

= c(n − 34) lg(n − 34)− cn + 34c + n ≤ c(n − 34) lg(n − 34)

The last step holds if −cn + 34c + n ≤ 0.

cn − 34c ≤ n

c ≥ n
n−34

Notice that as n gets bigger, the ratio gets closer to 1, but will always be slightly
bigger. Pick c = 2. Then we need 2n − 68 ≥ n, or n ≥ 68.



4.3-9. T (n) = 3T (
√
n) + lg n. Let m = lg n, n = 2m. Then define

S(m) = T (2m)

= 3T (2
m
2 ) + lg 2m

= 3T (2
m
2 ) +m

= 3S(m2 ) +m

What do you do with that? Guess cm lgm, on the intuition of its similarity to
mergesort.

= 3c m
2 lg m

2 +m

= 3
2cm lgm − 3

2cm +m

This isn’t working out. In fact, the complexity class is wrong.



4.3-9. T (n) = 3T (
√
n) + lg n. Let m = lg n, n = 2m. Then define

S(m) = T (2m)

= 3T (2
m
2 ) + lg 2m

= 3T (2
m
2 ) +m

= 3S(m2 ) +m

What do you do with that? Guess cm lgm, on the intuition of its similarity to
mergesort.

= 3c m
2 lg m

2 +m

= 3
2cm lgm − 3

2cm +m

This isn’t working out. In fact, the complexity class is wrong.



Cms(n) =

{
0 if n ≤ 1
n − 1 + 2Cms(

n
2 ) otherwise

2

1 1

2

1 1

2

1 1

n
2

n
2

n
4

n
4

n
4

n
4

n

n · 0

n − 1

n
2
· 1

4 · (n
4
− 1)

2 · (n
2
− 1)



4.3-9. T (n) = 3T (
√
n) + lg n. Again, let m = lg n, n = 2m, and S(m) = 3S(m2 ) +m.

Then guess mlg 3 − m
2 . (Of course.)

S(m) = 3S(m2 ) +m

= 3((m2 )
lg 3 − m

2 ) +m

= 3mlg 3

2lg 3 − 3
2m +m

= 3mlg 3

3 + −3+2
2 m

= mlg 3 − m
2

So, S(m) = Θ(mlg 3) = Θ((lg n)lg 3).


