I. Core / B. Divide and Conquer
» General introduction (aspired to on Monday but actually Wednesday)
» Solving recurrences (also today)
» The master method (next week Monday)
» Quick sort (next week Wednesday)

Today:
» Old bits from Section 3.1
Problem 3-4.c
Common functions (Section 3.2)
Divide and conquer big pictures (Sections 4.(1 & 2))

>
>
>
» The substitution method (Section 4.3)



For next time

Read sections 4.(4 & 5).
Do Ex 4.5-1 and Problem 4-1.(a.b)



Problem 3-4.c. If f(n) = O(g(n)) and Ig(g(n)) > 1 and f(n) > 1 for sufficiently
large n, then Ig(f(n)) = O(lg(g(n)).

Scratch work: We need a d such that

lg c+lgg(n) < dlgg(n)
d > |g ¢ Ig g(n)
= lgg(n ' Igg(n)
> lgc+1

(lg c+1)lg g(n) lg c-1g g(n) +1g g(n)

Proof. Suppose f(n) = O(g(n)). Then there exist ¢, ng such that for all
n>ng, f(n) < c-g(n). Then
lg f(n) < lgcg(n) since lg is increasing
< lgc+lgg(n) by log property
< lgc-lgg(n)+lgg(n) Sincelgg(n)>1
< (lgc+1)-lgg(n)

Thus for n > ng, lg(f(n)) < (Ig c + 1) Ig(g(n)).



Big

“morals” of §4.(1 & 2)
Many problems have good divide and conquer solutions. The running time of a

divide and conquer algorithm can be captured by a recurrence. So, let's make sure

we can do recurrences.
Sometimes it's divide-and-conquer even when it doesn't seem like it is.

“Solving” a recurrence means finding an equivalent non-recursive formula.



“Normal” math induction:

“Normal” math induction:
1(0)
I(n) = I(n+1)
vV neN,lI(n)

“Strong” math induction:



Elements of recurrences (things to look for in making a good guess):
» The coefficient of the recursive application (number of subproblems)
» The divisor of n in the recursive application (size of subproblems)

» The non-recursive terms



Ex. 4.3-1. T(n)=T(n—1)+n.



Ex. 4.3-1. T(n) = T(n—1)+ n. Guess T(n) < c-n? Then
T(n) < c(h—1)2+n
= cn®>—2cn+c+n
= cn’+(1-2c)n+c

cn?

IN

The last step holds as long as
(1-2¢c)n+c < O

(2c—1)n

vV
o

C

n Z 5

The recurrence holds so long as ¢ > % and np > 557.



4.3-2. T(n)=T([2])+ 1.



4.3-2. T(n) = T([5]) + 1. First attempt. Guess T(n) < clgn

T(n) < clg[5]+1

IN

+3)+1

NS

clg(

= clg(”;l)—i-l

= c(lg(n+1)—1g2)+1
— c(gln+1)—~1)+1

= clg(n+1)—c+1

We would need this to be less than clgn ...



4.3-2. T(n) = T([5])+ 1. Try again. This time, guess T(n) < clg(n— b).

T(n) < clg([3]—-b)+1

IN

clg(5+3—b)+1
_ Clg(n+12—2b) +1
= c(lg(n+1—-2b)—Ig2)+1

= clg(n+1-2b)—c+1

IN

clg(n—b)
The last part holdsif n+1—-2b<n—b,sob>1;andif —c+1<0,s0c>1.



4.3-6. T(n)=2T(|2) +17)+n.



4.3-6. T(n) = 2T(|2] +17) + n. Guess cnlgn. Then
T(n) = 2T(|2]+17)+n
< 2¢(|2] +17)1g(|2] +17) +n
< 2c(24+17)1g(2+17) +n
= c(n+34)(lg(n+34)—1)+n

= cnlg(n+34)—cn—c34+n

This isn't working out.



4.3-6. T(n) =2T(| 5] +17) 4 n. Try again, this time guess c(n — 34)lg(n — 34).
T(n) = 2T([5]+17)+n

< 2¢(|5) +17—-34)lg([5] +17—34)+n

< 2¢(53+17—-34)lg(5 +17—-34) +n

= c(n—34)1g(52)+n=c(n—34)(Ig(n—34) — 1) +n

= c(n—34)Ig(n—34) —cn+34c+n < c(n—34)Ig(n— 34)
The last step holds if —cn+34c+ n <0.

cn—34c < n

n

¢ 2 im

Notice that as n gets bigger, the ratio gets closer to 1, but will always be slightly
bigger. Pick ¢ = 2. Then we need 2n — 68 > n, or n > 68.



4.3-9. T(n) =3T(y/n)+Ign.



4.3-9. T(n) =3T(y/n)+Ign.

Let m=lgn, n=2". Then define

S(m) = T(27)

= 3T(22) +Ig2m
= 3T(2%)+m

= 35(%)+m

What do you do with that? Guess cmlg m, on the intuition of its similarity to

mergesort.

This isn't working out. In fact,

= 3c3lgF+m

— 3 _3
= 5cmlgm—3scm+m

the complexity class is wrong.



ifn<l1

n—1+2Cns(5) otherwise

:{0

Cms(n)

Sy

4

cley




4.3-9. T(n) =3T(y/n)+lgn. Again, let m=Ign, n=2", and S(m) = 35(%) + m.
Then guess m'83 — 2. (Of course.)

o mlg3 3

= 3%z —om+m
me3 | 342

= 3 t—>5 m

_ g3 m

= m >



